Transforming Cellular Factories with Synthetic Biology

Kristala L. J. Prather

Arthur D. Little Professor Department of Chemical Engineering Microbiology Graduate Program Massachusetts Institute of Technology

Interagency Workshop on Synthetic Biology

October 16, 2019

Let's start with a different kind of factory...

Intro to Chemical Engineering

precision, flexibility, robustness can be achieved in the transformative steps?

Extending the Product Spectrum

Accessing new molecules through Biology: 4-Methylpentanol

Mimicking n-butanol (CoA-dependent) biosynthesis

Theoretical maximum energy yield of 94.6%

Final pathway employed **10 genes**

Max selectivity of ~80% for 4MP

from 8 different organisms

alcohol

Sheppard, et al, 2014. *Nat. Commun*. 5:5031.

The Need for New Products

- Increase diversity wrt atomic composition, molecular weight (e.g., materials), structural complexity....
- Are there unique opportunities to build hybrid production systems?

Back to the generic System...

Integrating Process Control into Cellular Factories

• How can we most effectively design and integrate "process control" circuits into cellular factories?

Glucaric Acid Production in E. coli

- US DOE "top value-added" chemical
- Used in pharmaceuticals, materials, deicers, detergents.....

Moon, T. S., et. al. Appl Environ Microbiol. (2009)

INO1 S. cerevisiae (yeast) MIOX M. musculus (mouse) Udh P. syringae (bacterium)

Yoon, S.-H., et al. J. Bacteriol. (2009)

Manipulating Glucose Metabolism

Metabolite Valves Across Scales

m2p-labs BioLector

250-ml shake flasks

Infors 3-L benchtop reactor

Transforming Cellular Factories

A Pathway for 3HB/3HV Biosynthesis

Tseng et al, 2009. Appl. Environ. Microbiol. 75(10):3137-3145. >2 g/L R- or S- 3HB

From 3HB/3HV to DHBA?

3-hydroxybutyrate & 3-hydroxyvalerate biosynthetic pathway

Production of 3,4-Dihydroxybutyrate (DHBA) Glucose + Glycolate

All cultures were *E. coli* MG1655(DE3) *end*^{A⁻} rec^{A⁻} grown in LB for 72 hours and were supplied with glycolate.

Martin et al, 2013. Nat. Commun. 4:1414

Extending the Hydroxyacid Pathway

Synthesis of Products from Fuel Pathways

Synthesis of Novel Biofuels

Key Questions:

- Supply of building block (propionyl-CoA)
- Condensation reaction of C2 + C3
- Acceptance of 5-carbon substrates for the remaining pathway enzymes

Bypass method for pathway modularization

Metabolic Pathway Design

Pentanol Synthesis from Trans-2-pentenoate

<u>Hypothesis</u>: Cofactor limitation prevents synthesis of desired end product, causing a "short-circuit"

Pentanol Synthesis from Trans-2-pentenoate

NADH limitation can be addressed by the use of <u>Ter</u> along with over-expression of <u>Fdh1</u> and <u>PDH_m</u>

Pentanol Synthesis via Module 1 + 2 + 3

Ongoing Challenges:

- 1. Increase alcohol to acid ratios
- 2. Reduce byproduct formation (C2, C3, and C4)

Changing the paradigm^{*} – from " CH_2 " to " CH_2O "

*Prof. B. D. Olsen

One Pathway, Many Products

An Integrated Approach to Materials Design

Acknowledgments

Current Group

Dr. Jason Boock Irene Brockman Stephanie Doong Adam Freedman Lisa Guay Apoorv Gupta Dr. Michael Hicks Aditya Kunjapur Dr. Christopher Reisch

Current Group

Sue Zanne Tan Yekaterina Tarasova <u>Former Post-Docs</u> Dr. Shawn Finney-

Manchester Dr. Effendi Leonard Dr. Matthew McMahon Dr. David Nielsen

Dr. Sang-Hwal Yoon

Former Students

Dr. Andres Abin-Fuentes
Dr. Diana Bower
Dr. Himanshu Dhamankar
Dr. Collin Martin
Dr. Collin Martin
Dr. Tae Seok Moon
Dr. Micah Sheppard
Dr. Eric Shiue
Dr. Kevin Solomon
Dr. Hsien-Chung Tseng

Collaborator: Prof. John Dueber, UC-Berkeley

Funding

Institute for Collaborative Biotechnologies (DoD), Masdar-MIT Flagship Program, MIT-Portugal Program, MIT-Reed Faculty Initiatives Fund, **MIT Energy Initiative**, NIH Center for Integrative Synthetic Biology, **National Science Foundation/ SynBERC, NSF/CAREER, Office of Naval Research/Young Investigator Program**, Pfizer Inc., **Shell Global Solutions (US) Inc**.

*The presenter declares competing financial interests.

"Retro-biosynthetic" Pathway Design*

- Integration of Biocatalysis (enzyme selection) and Metabolic Engineering (systems assembly, analysis)
- (Others) On-going work on algorithms for biosynthetic pathway design
- Elucidation of Design Principles
- Development of Design and Assembly Tools

* Curr. Opin. Biotechnol. 2008. 19:468-474

Candidates for Target Molecules

August 2004

Co-expression of 3 genes in *E. coli*

Moon et al, 2009. Appl. Environ. Microbiol. 75(3):589-595

Dynamic Control of Metabolic Flux

Dynamic Control of Metabolic Flux

Controlled degradation of PfkA leads to increases in G6P pool size...

Brockman and Prather, 2015. *Metabolic Engineering*, 28:104-113.

Circuit validation with exogenous MI

Circuit validation with endogenous MI

но~

D-glucose

Doong et al. 2018. PNAS. 115:2964-2969.

Metabolite-Driven Production of GA

Protein Engineering for Increased Selectivity

- Rational protein design (w/B. Tidor, MIT-BE)
- Using insoluble PHA polymer as indicator of selectivity

Biotechnol. Bioeng. 115:2167–2182

Evaluating Quorum-Sensing Devices Across Scales

- Developed *Metabolite Valves* based on Quorum-Sensing mechanisms
- Ultimate goal is application in large-scale production
- Small, medium and large scales important
 - Development scale should be reliable
- Especially relevant for QS due to reliance on extracellular molecular transport

Search Strategies for "Better" Enzymes

MIOX Enzyme (2nd Step)

<u>Network statistics</u> 336 nodes 3207 edges -log10(E)>120 Median %id = 67.6% Median alignment length = 291

Michael Hicks

Variable glucuronic acid titers in a naïve test set

□ Glucuronic acid titers (mM) (no fed MI) average ■ Glucuronic acid titers (mM) (fed MI) average

Choosing a new set of MIOX proteins

Active site residue conservation, N-terminal sequence length appear correlated with activity

Improved glucuronic acid titers in "informed" set

Summary

- Biological conversion is an effective tool for the production of chemical products.
- Pathway design enables access to unnatural structures, biosynthetic routes.
 - 3-Hydroxyacids
 - Saturated acids and alcohols
 - Glucaric acid
- New tools can be used to assemble, diagnose, and optimize pathways.

Acknowledgments

Current Group Bernardo Cervantes Christina Dinh Stephanie Doong Kevin Fox Lisa Guay Dr. Kristina Haslinger Jennifer Kaczmarek Cynthia Ni Ana de Vila-Santa

Former Members

Irene Brockman, Himanshu Dhamankar, Apoorv Gupta, Michael Hicks, Aditya Kunjapur, Collin Martin, Tae Seok Moon, Micah Sheppard, Eric Shiue, Kevin Solomon, Chris Reisch, Yekaterina Tarasova, Hsien-Chung Tseng, Sang-Hwal Yoon

<u>Funding</u>: Institute for Collaborative Biotechnologies (DoD), Masdar-MIT Flagship Program, MIT-Portugal Program, MIT-Reed Faculty Initiatives Fund, MIT Energy Initiative, NIH Center for Integrative Synthetic Biology, National Science Foundation/SynBERC, NSF/CAREER, NSF/MCB, Office of Naval Research/Young Investigator Program, Pfizer Inc., Shell Global Solutions (US) Inc.