

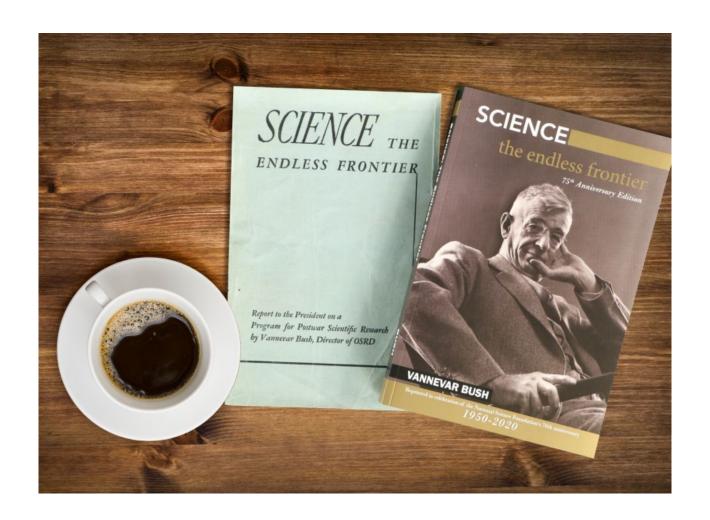
Advancing Technology, Innovation and Partnerships

Erwin Gianchandani NSF Assistant Director for Technology, Innovation and Partnerships

September 27, 2022 Introductory Webinar

Today's agenda

• Inspiration, vision


Mission, functions, programs

Status

75 years ago: The Endless Frontier

A defining moment

A defining moment


A defining moment: global competition

- Advanced manufacturing
- Advanced wireless
- Artificial intelligence
- Biotechnology
- Quantum information science
- Semiconductors and microelectronics
- •••


A defining moment

Missing Millions

Socioeconomic Challenges

A defining moment

Socioeconomic Challenges

A defining moment: socioeconomic challenges

Changing climate


Equitable access to education, health care

Critical and resilient infrastructure

A defining moment: society + technology

A defining moment

An evolving research, innovation ecosystem

Pace of discovery accelerated by data, emerging technologies

Demand for societal impact

Opportunity to leverage partnerships

Catalyzing a paradigm shift

Today	Tomorrow
Largely investigator-driven	 Users / beneficiaries engaged in shaping, conducting research
Primarily academic research teams	 Multi-sector teams – academia, industry, government, civil society, communities of practice
 Stream of discoveries improve prosperity, resilience, quality of life 	 Important societal and/or economic problems drive research pursuits



Catalyzing a paradigm shift

Today	Tomorrow
Largely investigator-driven	 Users / beneficiaries engaged in shaping, conducting research
Primarily academic research teams	 Multi-sector teams – academia, industry, government, civil society, communities of practice
 Stream of discoveries improve prosperity, resilience, quality of life 	 Important societal and/or economic problems drive research pursuits
"Technology / supply push"	+ "Market / demand pull"

Today: Jump-Starting America

CHIPS and Science Act of 2022

- Appropriates \$54 billion for semiconductors incentives, R&D, workforce development
- Authorizes NSF, DOE, NIST, NASA
- Authorizes \$81B for NSF:
 - +\$36B for the agency
 - Of that, +\$20B for TIP
- Authorizes a new NSF
 Directorate for Technology,
 Innovation and Partnerships

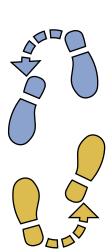
Today's agenda

Inspiration, vision

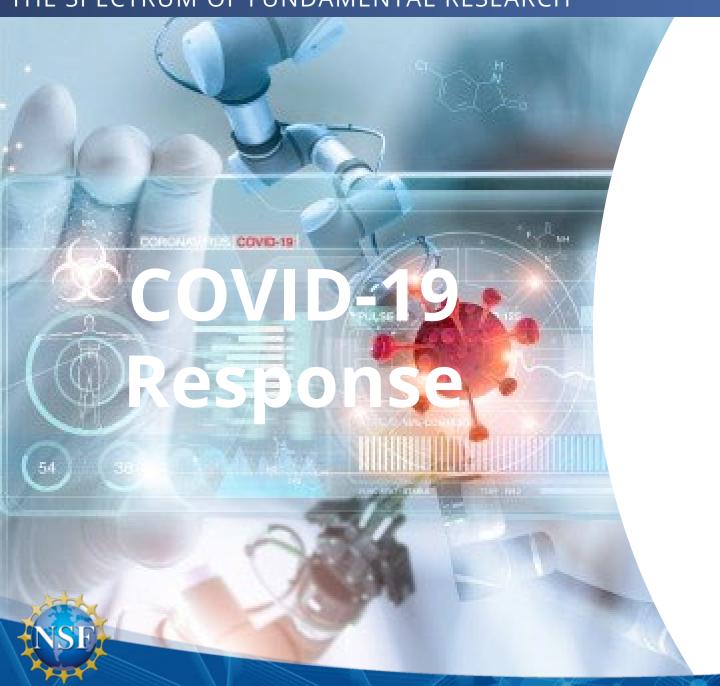
Mission, functions, programs

Status



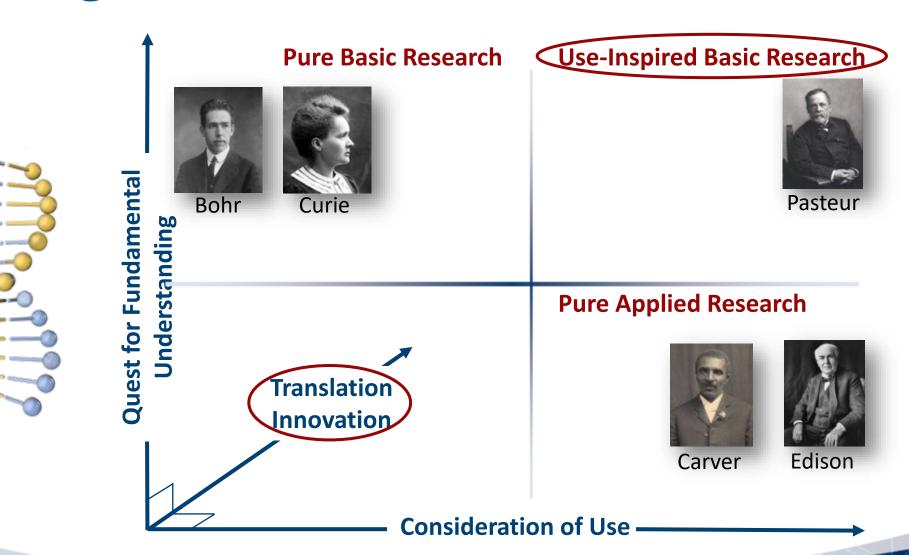

NSF mission

Meeting our moment with an intentional focus



CURIOSITY-DRIVEN, DISCOVERY-BASED EXPLORATIONS

The Milky Way's Black Hole


THE SPECTRUM OF FUNDAMENTAL RESEARCH

USE-INSPIRED,
SOLUTIONS-FOCUSED
INNOVATIONS

Meeting our moment with an intentional focus

NSF's existing directorates and offices

A new "horizontal" to enhance use-inspired and translational research

DIRECTORATE FOR TECHNOLOGY, INNOVATION AND PARTNERSHIPS (TIP)

Mathematical & Integrative Activities

Integrative Activities

Integrative Engineering

Partnerships as a Foundation

Accelerate Partnerships

Partnerships: A timely, illustrative example

Intel to Invest at Least \$20 Billion in New Chip Factories in Ohio

Building up U.S. chip production has been a focus of lawmakers and companies alike amid a global shortage of the crucial components.

"To help develop and attract a pipeline of skilled talent from within the region, Intel plans to invest approximately \$100 million over the next decade in partnership with Ohio universities, community colleges and the U.S. National Science Foundation [ranging] from collaborative research projects to building semiconductor-specific curricula for associate and undergraduate degree programs."

ntel Nii

"Significant investments such as this one will allow us to harness the best ideas from around the country to drive future semiconductor design and manufacturing as well as develop a diverse, next-generation semiconductor workforce, reaffirming U.S. competitiveness in this vital area. Today's announcement builds on our long history of collaboration with industry like Intel to accelerate fundamental research and rapidly bring solutions to market."

Sethuraman Panchanathan
 U.S. National Science Foundation Director

NSF, Intel partners to fund the development of a high-quality manufacturing workforce

Partnerships

latest news

More information @ beta.nsf.gov/tip/latest

\$10 Million Investment

- To advance education and training for semiconductor manufacturing and design.
- To improve equitable STEM education at:
 - Two-year colleges;
 - Four-year universities, including minorityserving institutions.

Innovation & Technology Ecosystems

Convergence Accelerator

Emerging Technologies

Regional Innovation

Experiential & Entrepreneurial Learning

Partnerships as a Foundation

Accelerate Partnerships

Innovation & Technology Ecosystems

Convergence Accelerator

Emerging Technologies

Regional Innovation

Experiential & Entrepreneurial Learning

Partnerships as a Foundation

Accelerate Partnerships

Convergence Accelerator

Open Knowledge Networks

Track B

Al and the Future of Work

Track C

Quantum Technology

Track D

Al-Innovation
Data Sharing &
Modeling

Track E

Networked Blue Economy

Track F

Trust & Authenticity in Communication
Systems

2019 COHORT

Phase 2

Phase 2

Track G

Securely Operating Through 5G Infrastructure (joint with DOD)

Track H

Enhancing
Opportunities for
Persons with
Disabilities

Track I

Sustainable Materials for Global Challenges

Track J

Food & Nutrition Security

Track K

Track Topic: TBD

Track L

Track Topic: TBD

2022 COHORT

FUTURE COHORT

NSF Convergence Accelerator, DOD partner to advance 5G technologies

Convergence Accelerator

latest news

\$12 Million Investment

- 16 multidisciplinary teams in Track G: Securely Operating Through 5G Infrastructure.
- Supports enhancement and augmentations to 5G infrastructure, while meeting security and resilience requirements.

More information @ beta.nsf.gov/tip/latest

Innovation & Technology Ecosystems

Convergence Accelerator

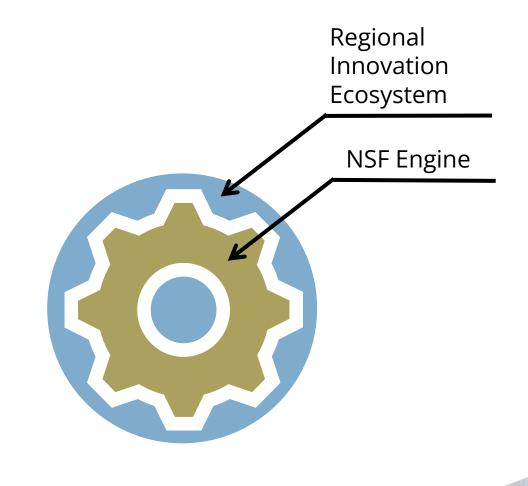
Emerging Technologies

Regional Innovation

Experiential & Entrepreneurial Learning

Partnerships as a Foundation

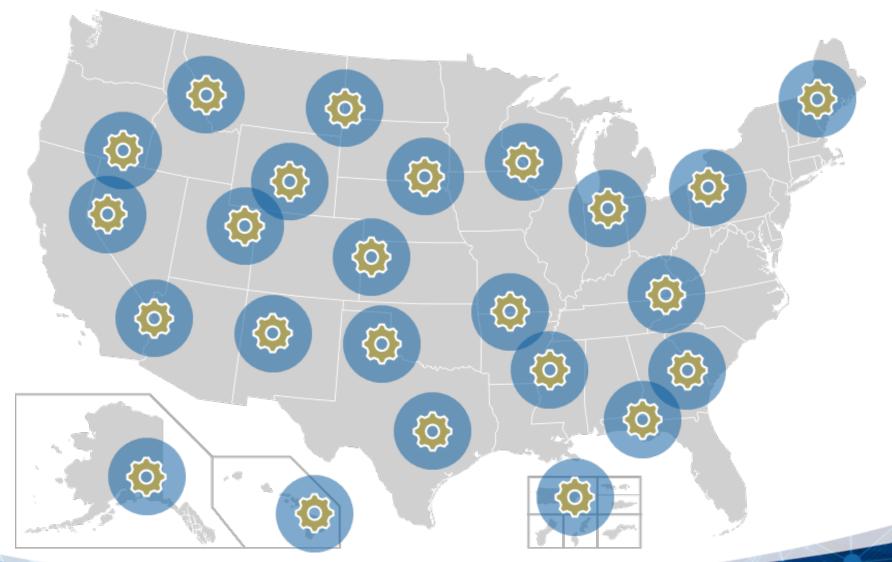
Accelerate Partnerships



What is an NSF Engine?

A multi-sector **coalition** of regional partners working together to catalyze a **regional innovation ecosystem** in a **topic area** of regional relevance and national and societal significance.

Engines are led by CEOs and include partners from industry, institutions of higher education, government, and non-profit and community organizations.



NSF Engines: Intentionally different

- A different scale
- Iterative co-design/co-creation through intentional engagement of broad, diverse stakeholders ("users")
- Cohort-based training
- Milestone requirements for continued funding
- Focused success expectations:
 - Regional development
 - Individual and geographic diversity, including mentoring
 - Scaling and sustainability
 - Active participation and engagement
 - IP ownership extends to all contributing parties
 - Changing culture
 - Practitioner/entrepreneur development
 - Integrative/additive
- Evaluation of the overall approach

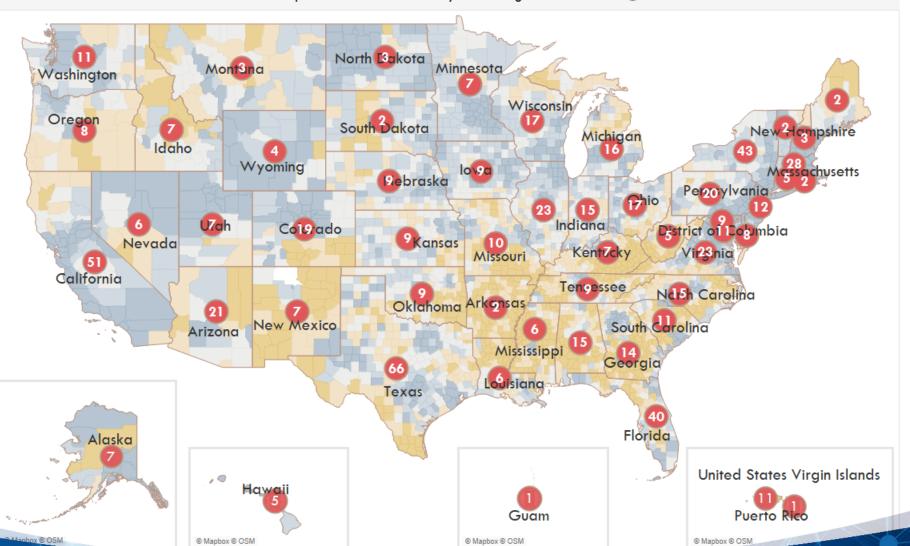
NSF Engines: Expanding innovation across the US

Concept Outlines Explorer

Search by Theme (and more)

Search By State [7]

Overview


54

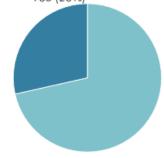
By Lead Organization

By Region of Service

Filter(s): NSF Engines Type

Map View of Submissions by Lead Organization State ?

Concept Outline Submission Metrics


Number of Submissions Advancing

679

Number of Distinct Submitting 518 Organizations

States and US Territories Submitting

NSF Engines Type-2 Proposal 935 (28%)

NSF Engines Type-1 Proposal 2,346 (72%)

To access the full list of all accepted concept outlines, please check https://airtable

Concept Outlines Explorer

Theme Count Control

Search By Theme (and more)

Search By State (7) Overview (7)

10 to 103

and Null values

Search All

?

NSF Engines Type

State Name

Submission Organization

Submission ID

Keywords (free text)

States Footpring (using state abbreviation)

Submission Theme

Critical Infrastructure

Transportation

Blue Economy Resilience Entrepreneurship Inclusion Water

Agriculture Advanced Materials Innovation Cybersecurity

Blockchain Diversity Clean Energy Aerospace

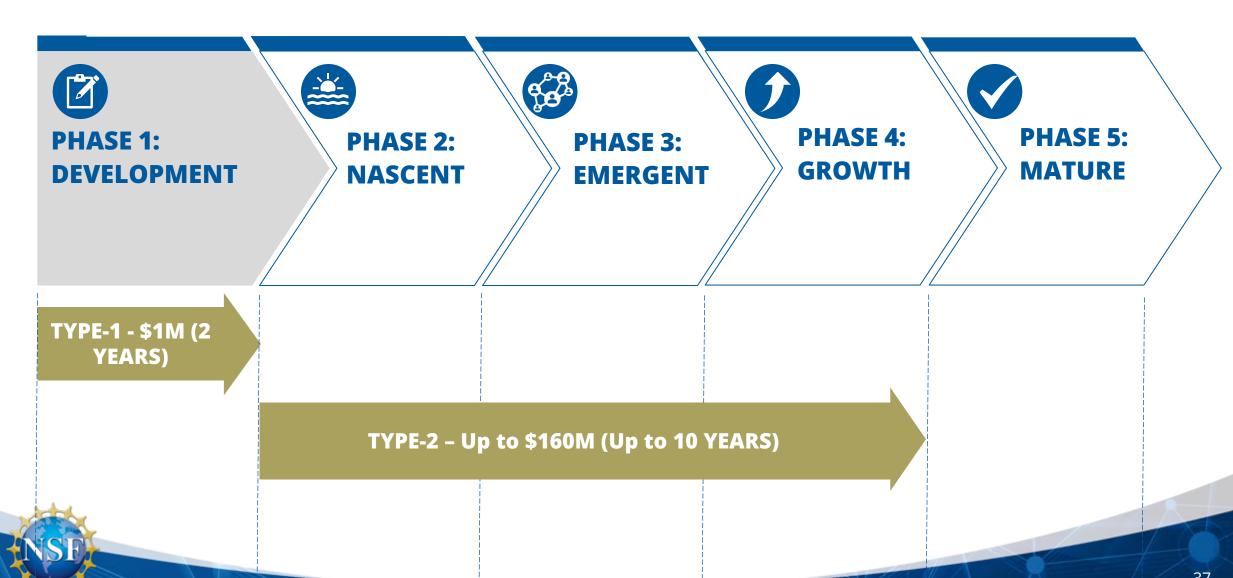
Robotics Rural Community Economic Development Autonomy Workforce Development Battery Sustainability

Carbon Reduction Advanced Manufacturing Energy Artificial Intelligence

Coastal Resilience Bioeconomy Environment Health Semiconductors Disaster And Emergency Response Climate Change Food Renewable Energy Technology

Equity Internet Of Things Supply Chain Community Resilience

Guantum Data Analytics


Mobility Automation

Digital Health Wireless Broadband Infrastructure Workforce Circular Economy

Number of Submissions:

ID	NSF Engines Type	Submission Title	Organization Name	Last Name	Region Of Service	States	Topic Summary	Keywords	
INQ-22-00640	Type 1 Proposal	Bridging the Gap in the Digi	XLerateHealth	Willmot	The region of service.	KY,WV,SC	. The Engine proposes to ca.	. virtual care,digital health,access,equity,southeast	<u>-</u>
INQ-22-00925	Type 1 Proposal	Carbon-negative cementitiou	Worcester Polytechnic Ins	Eggleston	New England	MA	The Engine proposes to cr	$carbon\ negative, construction\ material, polysilox anes, additive\ manufacturing, in.$	<u>-</u>
INQ-22-00907	Type 1 Proposal	NSF Engines: Type-1: A Ga	Worcester Polytechnic Ins	Smith	Southern New Engla	MA,RI,CT	The Engine proposes the i	Null	<u>-</u>
INQ-22-00636	Type 1 Proposal	ICoN: Integrative Connectivit	Worcester Polytechnic Ins	Wyglinski	New England (CT, M.	. CT,MA,ME,	. The Engine proposes to o	connectivity,integrative,new england,wireless,workforce development	<u>-</u>
INQ-22-00491	Type 1 Proposal	NSF Engines: Type-1: WPI –	Worcester Polytechnic Ins	Woolridge	Central MA, the sout	MA	The engine proposes to w	biotech manufacturing,tech workforce development,biomedical ecosystem,bio	.
INQ-22-01119	Type 1 Proposal	A statewide innovation engin	WiSys	Sanga	WI	WI	The Engine proposes to w	agriculture, sustainability, technology, commercialization, startup	<u>-</u>
INQ-22-00444	Type 2 Proposal	NSF Engines: Type-2: Advan	Wichita State University	Tomblin	Kansas with a focus	KS	The Engine proposes to e	artificial intelligence,machine learning,hypersonics,lightning	
INQ-22-00457	Type 1 Proposal	NSF Engines: Type-1: West	Western Michigan Univer	Atilhan	Western Michigan	MI	The Engine proposes to w	per- and polyfluoroalkyl substances,pfas,wastewater,environment,remediation	⊠
INQ-2 6 772	Type 1 Proposal	"Al3 West Living Laboratory	Western Maricopa Coalit	Hoffman	The Greater Phoenix.	AZ	The Engine proposes to le	artificial intelligence,robotics,cognitive applications,health technology,fintech	
	Type 2 Proposal	NSF Engines: Type-2: Using	Western Kentucky Univer	Brown	South, the Midwest,	KY	The Engine proposes lever.	. aiot,agritech,commercialization,urban economic development	
NSE	2 Proposal	NSF Engines: Type 2: Resear	Western Fire Chiefs Asso	Van Ballego	Western United Stat	CA,CO,W	The Engine proposes to bu.	. wildland fire,wildland fire urban interf	
		Dovolopmo	Wastorn Colorado Univo	Reunlead	Wastern Slane of C	CO AZ LIT	The Engine proposes to us	rural company	

NSF Engines: Accepting two proposal types

NSF Engines: Timeline and status

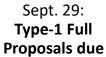
May 3: NSF Engines issues funding opportunity

June 30: Concept Outlines due

Aug. 31: Type-1 Letters of Intent due

Winter 2022/2023: Type-1 Awards made

Jan. 31: Type-2 Full Proposals due



May-June: Webinars, regional roadshows, office hours

Dec. 15: Type-2 Letters of Intent due

CHIPS and Science Act: NSF + EDA

Regional Technology Hubs

Regional Innovation Engines

Fundamental research

Economic growth

NSF and EDA are working together

- Start at the fundamental research and R&D layer
- Piping into existing economic growth structures
- Create research and translation spine for regions
- Broaden participating by URM populations in STEM
- Multiple entry points and different stages of development
- 8-10 years, up to \$160M per Engine

Place-based

Long-term investments

Economic growth, tech focus

Connective tissue for innovation ecosystem

Public and private partnerships

Regional Tech Hubs

- Build on a region's now and future economic drivers
- Later-stage technology development & demonstration
- Scale up capacity to deploy breakthrough technologies
- Create physical, human, and systems infrastructure
- Lead tech-/industry-aware workforce development initiatives
- Designation, planning, and implementation for hubs

Innovation & Technology Ecosystems

Convergence Accelerator

Emerging Technologies

Regional Innovation

Experiential & Entrepreneurial Learning

Partnerships as a Foundation

Accelerate Partnerships

US/UK Privacy Enhancing Technologies (PET) Prize Challenges

Goal: Advance Privacy-Preserving Federated Learning

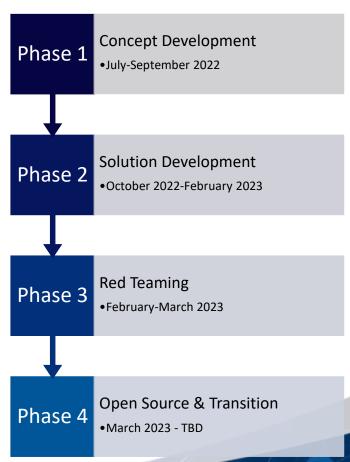
- O **Drive innovation** in development and application of PETs
- Develop a privacy-preserving solution that is capable of efficiently generating high-utility machine learning models
- O **Deliver strong end-to-end privacy guarantees** against a set of common threats and privacy attacks, leveraging a combination of input and output privacy techniques

Challenge Tracks:

Track A: Develop a model to identify anomalous financial transactions

Data provider:

SWIFT


Track B: Develop a model to predict an individual's risk to infection

Data provider:
University of Virginia

Generalizable: Develop a solution that can be adapted for use in both data sets

Total Prize Awards = \$800,000

Phases & Timeline:

Technology Translation

I-Corps

PFI

SBIR/STTR

Innovative Pathways

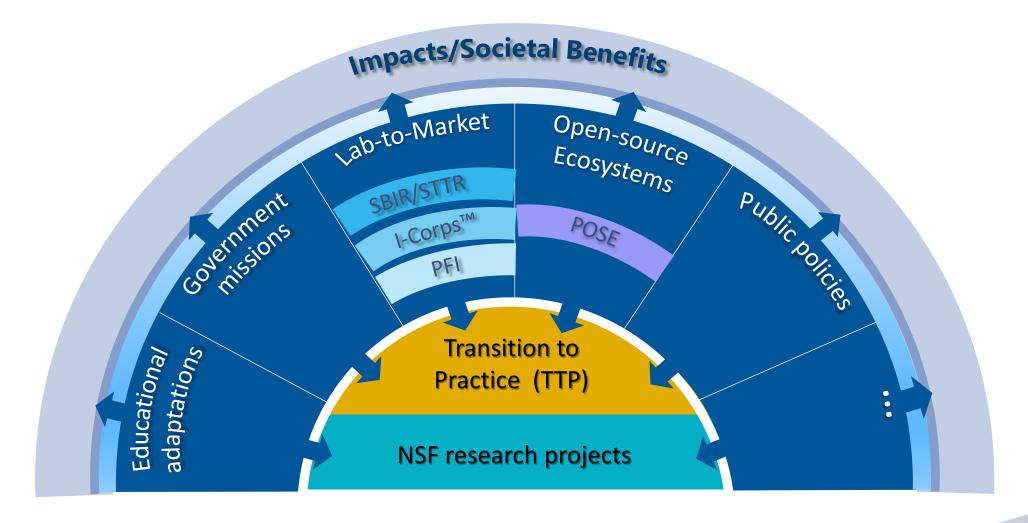
Innovation & Technology Ecosystems

Convergence Accelerator

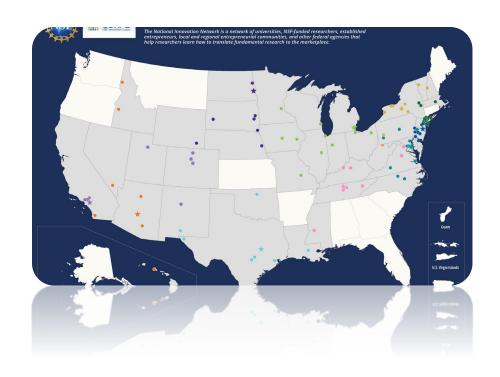
Emerging Technologies

Regional Innovation

Experiential & Entrepreneurial Learning


Partnerships as a Foundation

Accelerate Partnerships


Research Impacts

NSF expands the National Innovation Network with 5 new I-Corps Hubs

More information @ beta.nsf.gov/tip/latest

\$15 Million Investment

- I-Corps Hubs work collaboratively to build and sustain a diverse and inclusive innovation ecosystem across the U.S.
- Each Hub receives up to \$3 million investment per year for five years.
- Now, a total of 10 regional I-Corps Hubs with nearly 100 universities scale the NSF-led National Innovation Network

Technology Translation

I-Corps

PFI

SBIR/STTR

Innovative Pathways

Innovation & Technology Ecosystems

Convergence Accelerator

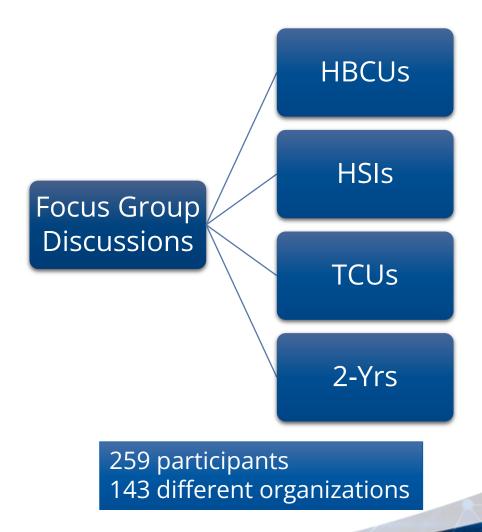
Emerging Technologies

Regional Innovation

Experiential & Entrepreneurial Learning

Partnerships as a Foundation

Accelerate Partnerships


"Designing in" DEIA

GOAL:

To ensure the successful inclusion of minority-serving institutions, two-year institutions, and other academic institutions underrepresented in the NSF portfolio in the NSF Engines program.

OBJECTIVES:

- 1. Emphasize the essential role that MSIs will play in realizing the mission of the NSF Engines
- 2. Gather insight from participating institutions about how they can benefit from and best contribute to the NSF Engines
- 3. Address the questions, concerns, and challenges about engaging in the NSF Engines, or TIP more generally

"Designing in" DEIA

Today's agenda

• Inspiration, vision

Mission, functions, programs

Status

Ramping up TIP

intel

Jan. 21: NSF + Intel announce semiconductor workforce partnership

March 16: NSF establishes TIP

Privacy-Enhancing Technologies PRIZE CHALLENGES

July 20: NSF, NIST, OSTP, UK announce privacy prize challenges

Sept. 7: NSF, DOD partner to advance 5G security

Activate

Sept. 19: NSF announces Entrepreneurial Fellowships

Feb. 15: Pathways to enable Open-Source Ecosystems

May 3: NSF Engines program

July 28: NSF Engines Concept Outlines published

Sept. 8: NSF awards five new I-Corps™ Hubs

FY 2023 President's Budget Request

\$10.492 billion \\ +19% over FY 2022 Enacted

FY2023 BUDGET REQUEST TO CONGRESS

Investments in the Administration's priorities of responding to the pandemic, tackling climate change, spurring economic recovery, innovating for equity, and ensuring national security and economic resilience.

THE DIRECTORATE FOR TECHNOLOGY, INNOVATION, AND PARTNERSHIPS (TIP)

\$879.87 million

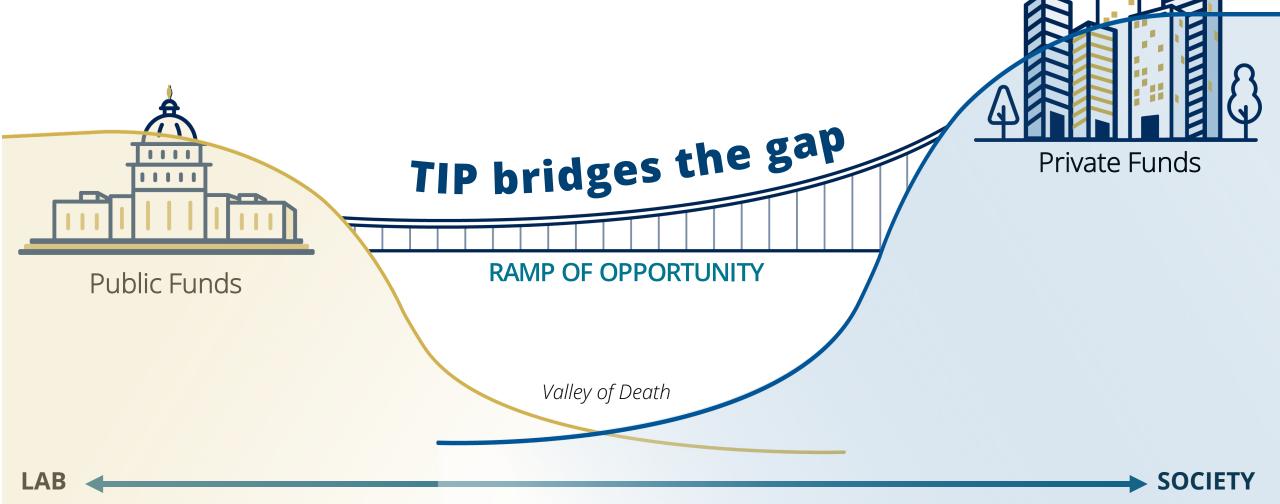
ADVANCED MANUFACTURING **\$421.51 million**

ADVANCED WIRELESS **\$168.56 million**

ARTIFICIAL INTELLIGENCE **\$734.41 million**

\$392.26 million

MICROELECTRONICS AND SEMICONDUCTORS \$145.69 million



QUANTUM INFORMATION SCIENCE

\$261.0 million

NSF programs power breakthroughs

Foundational Research

Use-Inspired Research

Proofs-of-Concept

Prototype Development

Product/Solution Development

National and Societal Impact, Commercialization

Technology, Innovation and Partnerships

https://beta.nsf.gov/tip/latest tip@nsf.gov

Erwin Gianchandani Assistant Director, TIP

Thyaga NandagopalDivision Director, TIP/ITE

Gracie NarchoDeputy Assistant Director, TIP

Barry JohnsonDeputy Director, TIP/TI

