

Energy, Environment, Security: Can we have it all?

Steven E. Koonin, Chief Scientist, BP plc NSF Distinguished Lecture October 27, 2008

Energy demand grows with economic development

annual primary energy demand 1971-2003

Source IEA, 2004 (Excludes biomass)

Substantial growth in energy demand is projected

Note: 'Other renewables' include geothermal, solar, wind, tide and wave energy for electricity generation

US Energy flows illustrate different fuels for different needs (Annual total ~ 100 Ej)

There are substantial global fossil fuel resources; the world will not run out anytime soon...

Gas

Oil

Coal

oil supply and cost curve

Availability of oil resources as a function of economic price

Source: IEA (2005)

Fossil fuel reserves are not uniformly distributed

Source: BP Statistical Review 2008

NOCs hold majority of oil and gas reserves; OPEC < 40% of daily production

CO₂ emissions and GDP per capita (1980-2004)

Source: UN and DOE EIA Russia data 1992-2004 only CO₂ emissions, OECD and non-OECD, 1865-2005

Source: Adrian Ross, 10-06-08

anthropogenic perturbations to the carbon cycle are small, but secular

The long CO₂ lifetime is highly problematic

Drastic emissions reductions are required to stabilize concentrations

greenhouse gas emissions in 2000 by source

Energy emissions are mostly CO₂ (some non-CO₂ in industry and other energy related). Non-energy emissions are CO₂ (land use) and non-CO₂ (agriculture and waste).

Source: Stern Review, from data drawn from World Resources Institute Climate Analysis Indicators Tool (CAIT) on-line database version 3.0

The three great energy problems

- Energy poverty of ca 2B people
 - Fuel for cooking/heating
 - Electricity for lighting
- Security of supply
 - Reliable and economic energy supply
 - Mostly about liquid hydrocarbons for transport
- Greenhouse gas emissions
 - Mostly about CO₂ from stationary sources
 - Power and heat

We must identify, develop, and implement the most <u>cost-effective</u> and <u>material</u> solutions

Energy technologies change slowly

Source: EIA

efficiency is not the same as conservation

It is wholly a confusion of ideas to suppose that the economical use of fuels is equivalent to a diminished consumption. – W.S. Jevons, 1865

+11%

- Instances
 - Supply-limited situations
 - US refrigerators

Annual Fuel Consumption:

US automobile fleet

United States Refrigerator Use v. Time

Net Miles per Gallon: +4.6% - engine efficiency +23.0% - weight/performance -18.4% Annual Miles Driven: +16%

- Price and/or policy are the surest ways to induce conservation
 - •Make full cost visible at point of use
- This is politically difficult

What can we do about transport?

- Encourage conservation (not efficiency!)
 - raise the price of driving
 - Vehicle downsizing and lightweighting, behavior
- Encourage novel/alternative vehicle technologies at cost (CAFÉ, ...)
 - HCCI, EGR, VVT, cylinder deactivation, ...
 - Hybrids, plug-in hybrids
 - "Caution" on full electric, "no" on hydrogen

Transportation Fuel Supply and Demand

Source: IEA

What can we do about transport?

- Encourage conservation (not efficiency!)
 - raise the price of driving (fuel tax, CAFÉ)
 - Vehicle downsizing, lightweighting, behavior
- Encourage novel/alternative vehicle technologies at cost
 - HCCI, EGR, VVT, cylinder deactivation, ...
 - Hybrids, plug-in hybrids
 - "Caution" on full electric, "no" on hydrogen
- Encourage (with consistency) a diverse portfolio of unconventionals and alternatives
 - Biofuels (relax the ethanol tariff, 2nd and later generations)
 - Coal to liquids, tar sands production (CO₂ mitigation?)

carbon is fungible

Growth in unconventional liquids

Source: IEA IEO 2007

What can we do about transport?

- Encourage conservation (not efficiency!)
 - raise the price of driving (fuel tax, CAFÉ)
 - Vehicle downsizing, lightweighting, behavior

Encourage novel/alternative vehicle technologies at cost

- HCCI, EGR, VVT, cylinder deactivation, ...
- Hybrids, plug-in hybrids
- "CAUTION" on full electric, "NO" on hydrogen

Encourage (with consistency) a diverse portfolio of unconventionals and alternatives

- Biofuels (relax the ethanol tariff, 2nd and later generations)
- Coal to liquids, tar sands (CO₂ mitigation?)

Expand conventional production

- Increased investment in producing known reserves
- EOR for existing fields
- US OCS (80 B bbl reserves?)

electricity generation shares by fuel - 2004

Source: IEA WEO 2006

What do we do about heat and power?

Conservation and efficiency

- raise the price of electricity and make it evident
- efficiency standards
- regulatory incentives
- Building design, city design

per capita US electricity by state

potential of demand side reduction

Low Energy Buildings

- Buildings represent 40-50% of final energy consumption
- Technology exists to reduce energy demand by at least 50%
- Challenges are consumer behaviour, policy and business models

Urban Energy Systems

- 75% of the world's population will be urbanised by 2030
- Are there opportunities to integrate and optimise energy use on a city wide basis?

What do we do about heat and power?

Conservation and efficiency

- raise the price of electricity and make it evident
- efficiency standards
- regulatory incentives
- Building design, city design

Set a price on carbon emissions

- A level playing field for all technologies
- Likely "winners" will be
 - Natural gas
 - On-shore wind
 - Nuclear fission
 - Carbon capture and storage

impact of CO₂ cost on levelised Cost of Electricity

Source: IEA Technology Perspectives 2006, IEA WEO 2006 and BAH analysis

IEA carbon cost curve shows similar conclusion

Figure ES.1 Marginal emission reduction costs for the global energy system, 2050

How do we get started on the solutions

Technically informed, coherent, stable government policies

- Educated decision-makers and public
- Focus on the most material/lowest-cost measures
- For short/mid-term technologies
 - Avoid picking winners/losers
 - Level playing field for all applicable technologies
- For longer-term technologies
 - Support for pre-competitive research
 - Hydrates, fusion, advanced [fission, PV, biofuels, ...]

Business needs reasonable expectation of "price of carbon"

- The "right" price applied universally with long-term consistency
- Transparent and ring-fenced use of carbon revenues
- Mitigation of impacts on the poor

Universities/labs must recognize and act on importance of energy research

Technology, economics, and policy

What is Plan B for climate change?

- The world should make its best effort to stabilize GHG concentrations through conservation, decarbonization of the energy supply, and reducing non-energy emissions
- But it is possible that levels deemed "safe" will be exceeded
- The CO₂ will remain in the atmosphere for many centuries
- The response beyond continued conservation and decarbonization would depend upon how severe the impacts are
- Adaptation (will be happening anyway)
 - Hardening of infrastructure (insulation, dams, seawalls, aqueducts, ...)
 - Shifts in agricultural patterns, population
 - Proportional, local, immediate
 - Costs? The ability to pay?
- Climate engineering is a last resort for "climate emergencies"
 - Albedo modification (need only to go from 0.30 to 0.31)
 - In space, in the atmosphere, at the surface
 - At best a palliative response (rebound, continued ocean acidification)
 - Removal of GHGs from the atmosphere (probably biological)
 - Annual carbon exchange with the atmosphere is ~200 Gt vs fossil fuels increment of ~8 Gt

Energy is only one aspect of "The Problem"

Energy Trends and Technologies Video at

http://clients.mediaondemand.net/BP/#

Questions/Comments/Discussion