

JDEM

Neil Gehrels NASA/GSFC

JDEM Project Scientist

AAAC October 15, 2009

JDEM Motivation

JDEM is a space mission to determine the nature of the **dark energy** that is driving the current accelerated expansion of the universe

Space observations provide the best opportunity for a major step forward in understanding

L2 orbit

3-5 year mission

The time is ripe for JDEM:

- Dark energy study needs large area, sensitive surveys in the NIR and visible
- Space-qualified large format HgCdTe and CCD detectors are US developed technology and flight ready

current acceleration

JDEM Science

- JDEM is an optical-IR survey mission with Dark Energy as its major goal.
 Ancillary science comes as a by-product of DE surveys.
- JDEM must perform as a precision cosmology experiment with tight error control. DE measurements are systematics limited.
- There are 3 DE major techniques. Each is best done in the stable, clear environment of space. JDEM will employ one or more of them to give 10x advance in DE.
 - weak lensing: large-scale imaging and photo-z survey
 - baryon acoustic oscillations: large-scale spectroscopy and imaging survey
 - supernovae: monitoring 10 deg² field
- JDEM provides a comprehensive sky survey data set (100's TB) to the world community for ancillary science

JDEM NIR Surveys

NIR Imaging Surveys

Redshift Surveys

JDEM provides factor of 100-1000 step forward in imaging & redshift surveys

JDEM Techniques

 Three most promising techniques each provide different physical observables and unique information related to DE:

Baryon Acoustic Oscillation (BAO)
 D_A(z), H(z) direct measure

Weak Lensing (WL)
 D_A(z), growth of structure

Type Ia Supernovae (SNe)
 D_L(z)

Why Space?

- The following observations that are critical to dark energy progress are impossible or infeasible to make from the ground:
 - Wide-field spectroscopy of the bright H-alpha line to z>1 for BAO
 - Supernova observations to z>1. Precision NIR light curves of all supernovae.
 - Wide-field survey to >25th mag in NIR for WL photo-z's
 - Galaxy shape measurements with small & stable PSF

JDEM Mission Formulation

- JDEM is a joint NASA-DOE mission
- MOU in place between NASA and DOE
- JDEM Project Offices have been established at GSFC and LBNL
- Implementation Agreement will follow
- Oversight group at agency level chaired by J. Morse and D. Kovar

JDEM Configurations

- Two mission architectures were presented to Astro2010 in June
 - JDEM-IDECS
 - ESA participation
 - HgCdTe and CCD imagers, plus HgCdTe spectrometers.
 - WL shape measurement with CCDs in visible.
 - JDEM-Omega
 - HgCdTe imager and spectrometers. No CCD imager.
 - WL shape measurement with HgCdTe in space-unique NIR, at some risk. Visible photo-z data from ground.
- Project offices will be studying Probe-class architectures with cost goal of \$650M + launch services

Dark Energy Figures of Merit

- Key dark energy FoMs defined by Dark Energy Task Force (DETF) and Figure of Merit Science Working Group (FoMSWG) committees
 - DETF FoM measures dark energy equation of state
 - Gamma FoM measures growth of structure
- JDEM goal defined by DETF is factor of 10 improvement in the DETF FoM compared to current (Stage II) experiments
- FoMSWG and JDEM SCG expanded this to factor of 10 improvement compared to pre-JDEM (Stage III) experiments
- JDEM Probe goal is original DETF definition

DETF FoM is inverse of the area of error ellipse in w_0 - w_a plane

Community Involvement in Mission

- The science community has had and will continue to have many opportunities to provide input into the definition of the mission.
- A Science Coordination Group (SCG) was established for 6 months to aid in establishing initial requirements and evaluating JDEM Project Office developed Reference Missions.
- An Interim Science Working Group solicitation is currently out
 - To provide assistance to Project Office during concept development
 - Members to be selected by NASA and DOE
 - Members of Astro2010 main committee and EOS panel excluded due to conflict of interest concerns
 - Chair selected from proposers by NASA and DOE
 - NASA Project Scientist (Gehrels) and DOE Project Manager (Levi) to be ex-officio
- A Science Working Group will be competitively selected following mission formulation based on Astro2010 report & contingent upon its recommendation
 - The SWG will work with the Project Office to optimize the science requirements and observing strategies.

Project Status

- JDEM Probe Study requested by NASA and DOE. The requirement is \$650M mission life cycle cost excluding launch vehicle.
 - Initial efforts will be focused on defining a wide range of possible payload concepts. Varying levels of emphasis in BAO, SNe and WL techniques in each of the concepts. FoM will be determined for various ops concepts.
 - Range of spacecraft concepts to be considered to accommodate each of the Probe study payload concepts.
 - One of the concepts may be selected or modified for more detailed development in 2010 (depending on Astro2010 recommendation).
- Completed evaluation of industry proposals for Omega telescope concept development. Award imminent.
 - Determine feasible design concepts, perform integrated modeling and parametric cost trades, and develop cost and schedule estimates.

Project Status cont.

- Omega reference configuration will be updated in the winter to incorporate results of telescope study and probe activity.
- Study in process to assess suitability of HgCdTe detectors for WL imaging. Examining impact of Interpixel Capacitance, Reciprocity and Persistence on shape measurements. Preliminary results look encouraging.
- NASA and DOE HQ's in process of establishing a JDEM Interim Science Working group to assist Project during Pre-Phase A.

Summary

- The time is right for JDEM
- New technology large-format detectors are now space qualified, enabling wide-field space surveys
- Space observations provide the needed clean systematics control.
 JDEM promises the best path forward for dark energy understanding in the coming decade.
- Direction for JDEM to come from Astro2010

Dark energy is the mystery of our time. Solving it will lead to a new era of understanding how the universe works and what our cosmic fate is

