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•  And then there are the computational issues 
–  and, most notably, the interactions of computational and 

inferential issues 
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•  “It should run just as fast as our classic service” 
•  “It should only improve as we collect more data; in 

particular it shouldn’t slow down” 
•  “There are serious privacy concerns of course, and 

they vary across the clients” 
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•  Big Data analysis requires a thorough blending of 
computational thinking and inferential thinking 

•  What I mean by computational thinking 
–  abstraction, modularity, scalability, robustness, etc. 

•  Inferential thinking means (1) considering the real-
world phenomenon behind the data, (2) considering 
the sampling pattern that gave rise to the data, and 
(3) developing procedures that will go “backwards” 
from the data to the underlying phenomenon 
–  merely computing “statistics” or running machine-learning 

algorithms generally isn’t inferential thinking 
–  a focus on confidence intervals---not just “outputs”  



The Challenges are Daunting 

•  The core theories in computer science and statistics 
developed separately and there is an oil and water 
problem 

•  Core statistical theory doesn’t have a place for 
runtime and other computational resources 

•  Core computational theory doesn’t have a place for 
statistical risk 



•  Inference under privacy constraints 
•  Inference under communication constraints 
•  Inference (confidence intervals) and parallel, 

distributed computing 

Outline 



Part I: Inference and Privacy 

with John Duchi and Martin Wainwright 
 
 



•  Individuals are not generally willing to allow their 
personal data to be used without control on how it will be 
used and now much privacy loss they will incur 

•  “Privacy loss” can be quantified via differential privacy 
•  We want to trade privacy loss against the value we 

obtain from “data analysis” 
•  The question becomes that of quantifying such value 

and juxtaposing it with privacy loss 

Privacy and Data Analysis 
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