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Biology is an information technology 

1 micron3 volume 
4 megabit genome 

biochemical circuitry 
manufacturing plant 
atomic-level design 

è deep physics & chemistry 

grows from a single cell 
contains 1015 cells 

1027 macromolecules 
spans atomic to macro scales 

intelligent behavior 
è deep algorithmic issues 



Biology as an information technology 

Size:   25 m, 30 tons    20 m, 50 tons. 
Smarts:   multiple CPUs    7 kg brain 
Resolution:  22 nm in chips    0.3 nm everywhere 
Complexity:  106 parts, 1010 transistors   1015 cells, 1027 proteins 
Construction:  built in factory    growth algorithm 
Specification:  CAD files    genetic program 
 

How can we engineer molecular systems of 
comparable sophistication?  Molecular programming! 



chemistry 

information-based 
chemistry 

Life on Earth 
(biology) 

molecular 
programming 

Chemistry as an information technology 



Information technologies 

chemistry 

computers 

biology 

synthetic 
biology 

molecular 
programming 

A + B à X + Y 
Y + Z ßà YZ 



 Embedded computation  
in electro-mechanical systems  

Appliances 

Computers 

Vehicles 



Embedded computation  
in chemical and biological systems 

Synthesis of complex materials 

Controlling complex  
chemical synthesis 

Medical diagnostics & therapeutics 



Natural and artificial technology 



Biomimetic technologies 

Electro-mechanical technologies 
make it possible to create  
macroscopic robots with 
life-like autonomous behaviors. 

Boston Dynamics Big Dog 

Molecular technologies 
will make it possible  
to create molecular 
robotic systems with 
life-like autonomous 
behaviors. 

Douglas et al, Science, 2012 



The challenge of programming chemical systems 
•  What kind of programming language do we need to build a “fly”? 

–  What are the programmable molecular and biochemical building blocks? 
–  New concepts for programming and analyzing such systems? 
–  Intrinsic fault-tolerance, adaptation, and learning conceptually built in? 
–  How to incorporate geometric and mechanical factors?  

include gro
alpha := 0.75;
program p() := {
  gfp := 0;
  r := [ t := 0 ];
  selected & just_divided : { 
    print ( "At time ", r.t, ": 
        After division, cell ", id, 
        " has ", gfp, " gfp molecules" ) 
  }
  rate ( alpha * volume ) : {
    gfp := gfp + 1
  }
  true : { 
    r.t := r.t + dt
  } 
};
stemcell ( [], program p() );

? 



Nucleic acid nanotechnology 
as a first step toward 

chemical information technology 

•  Information-based 
•  Programmable 

•  Algorithmic 

•  Computation and construction 



The Brewery 
(by Ann Erpino) 



DNA as an Engineering Material 

Ned Seeman 
(New York University) 
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DNA as an Engineering Material 

Ned Seeman 
(New York University) 

Wood. 
Glue. 
Wool. 
Silk. 

Leather. 
DNA. 

Seeman, J. Theor. Biol. 1982 
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DNA as a Computing Substrate 

Len Adleman 
(USC) 

Gears. 
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Leonard M. Adleman, Science, 266: 1021-1024 (1994) 
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DNA 4-arm junctions 
(Seeman, 1982) 

100 nm 

Folding 

Machines 

50 nm 

Self-Assembly 

Growth of design complexity in  
DNA nanotechnology and DNA computing 

Circuits 

doubles every 3 years 



Programmable information-based chemistry 
RNA biology 

DNA nanotechnology 



Architectures for structural molecular programs 
a 

20 nm 

b 

c 

DNA origami 

single-strand 
tiles (SST) 

algorithmic 
self-assembly 

Rothemund, 2006 
Shih & Lin, 2010 

Wei et al, 2012 
Ke et al, 2012 

Barish et al, 2010 

Constantine Evans, 2014 



What kinds of dynamical behaviors 
are nucleic acid systems capable of? 

goes to completion…? 

oscillates…? 

does something complex…? 



DNA strand displacement circuits 

B. Yurke, A. Turberfield, A. Mills, F. Simmel, J. Neumann, Nature, 2000 
A. Turberfield, J Mitchell, B. Yurke, A. Mills, M. Blakey, F. Simmel, Phys Rev Lett, 2003 
Georg Seelig, David Soloveichik, Dave Zhang, Erik Winfree, Science, 2006 
Dave Zhang, Andrew Turberfield, Bernie Yurke, Erik Winfree, Science, 2007 
Lulu Qian & Erik Winfree, Science, 2011 
Lulu Qian, Erik Winfree, Shuki Bruck, Nature, 2011 
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DNA strand displacement circuits 

C G 
T A 

Lulu Qian, Erik Winfree, Science, 2011 



DNA strand displacement circuits 

-.7 1 

2 

1 

1x = 50 nM = 3•1013 copies per milliliter 

1x 1x 

2x 0.7x 

node-wire abstraction  

C G 
T A 

Lulu Qian, Erik Winfree, Science, 2011 



RQ 
ROX 

S6 

T’ S6’ 

Output	
  reporter 

Gate:	
  G5:56 
S6 

T S5 

T’ S5’ T’ 
Fuel:	
  w57 

S7 
T S5 

Threshold:	
  Th25:5 

S5’ T’ s2’ 

S5 

Input:	
  w25 

T S5 
S2 

Output 

Input 1 
2 

Fuel 

 

Gate 

 
-.5 

Input	
  
1.0 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
0.0 

A seesaw catalyst with threshold 

|T|=5  |Si|=15 



OR / AND gates 
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 A square root circuit 

2 1 4 3 2 1
⎢ ⎥= ⎣ ⎦y y x x x x



 A square root circuit 

2 1 4 3 2 1
⎢ ⎥= ⎣ ⎦y y x x x x

y2
1

y2
0

x3
1

x4
0

x4
1

y1
0

x3
0

x2
1

x2
0

x1
1

x1
0

y1
1



130 DNA strands (15-33 bases each)          74 initial DNA species  

2 1 4 3 2 1
⎢ ⎥= ⎣ ⎦y y x x x x

 A square root circuit 
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 A square root circuit 



x4x3x2x1=1010  y2y1=11 
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Linear Threshold (LT) gate 
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Hopfield associative memory 
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Hopfield associative memory 

Answers: Yes (1), No (0) or I don’t know (?)

Q1: Did the scientist study neural networks?
Q2: Was the scientist British?
Q3: Was the scientist born in the 20th century?
Q4: Was the scientist a mathematician?

0 1 1 0 Rosalind Franklin
1 1 1 1 Alan Turing
0 0 1 1 Claude Shannon
1 0 0 0 Santiago Ramon y Cajal

A “read your mind” game

Lulu Qian, Erik Winfree, Jehoshua Bruck, Nature, 2011 



Hopfield associative memory 

112 DNA strands  
(15-33 bases each) 
 
72 initial DNA species  



Hopfield associative memory 

Answers: Yes (1), No (0) or I don’t know (?)

Q1: Did the scientist study neural networks?
Q2: Was the scientist British?
Q3: Was the scientist born in the 20th century?
Q4: Was the scientist a mathematician?

0 1 1 0 Rosalind Franklin
1 1 1 1 Alan Turing
0 0 1 1 Claude Shannon
1 0 0 0 Santiago Ramon y Cajal

A “read your mind” game

112 
DNA 
strands

Human 
answers 

Human: The scientist I am thinking of was born in the 
20th century (1) but was not a mathematician (0).

DNA associative memory: The scientist you are thinking 
of didn’t study neural networks (0) and was British (1), 
so I guess she is Rosalind Franklin (0 1 1 0).
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Hopfield associative memory 

Answers: Yes (1), No (0) or I don’t know (?)

Q1: Did the scientist study neural networks?
Q2: Was the scientist British?
Q3: Was the scientist born in the 20th century?
Q4: Was the scientist a mathematician?

0 1 1 0 Rosalind Franklin
1 1 1 1 Alan Turing
0 0 1 1 Claude Shannon
1 0 0 0 Santiago Ramon y Cajal

A “read your mind” game

112 
DNA 
strands

Human 
answers 

Human: The scientist I am thinking of was British (1) 
and a mathematician (1).

DNA associative memory: The scientist you are thinking 
of studied neural networks (1) and was born in the 20th 
century (1), so I guess he is Alan Turing (1 1 1 1).
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Hopfield associative memory 

Answers: Yes (1), No (0) or I don’t know (?)

Q1: Did the scientist study neural networks?
Q2: Was the scientist British?
Q3: Was the scientist born in the 20th century?
Q4: Was the scientist a mathematician?

0 1 1 0 Rosalind Franklin
1 1 1 1 Alan Turing
0 0 1 1 Claude Shannon
1 0 0 0 Santiago Ramon y Cajal

A “read your mind” game

112 
DNA 
strands

Human 
answers 

Human: The scientist I am thinking of was British (1) 
but was not born in the 20th century (0).

DNA associative memory: There’s wrong information that 
you provided, I cannot recognize this scientist (x x x x).

? 1 0 ? x x x x   x1
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Toss a mixture of DNA in a test tube… 
What can it do?  What can’t it do? 



What kinds of dynamical behaviors 
are nucleic acid systems capable of? 

goes to completion…? 

oscillates…? 

does something complex…? 



Some behaviors of simple chemical systems 
(mass action, well-mixed) 

stabilization oscillation chaos 

open systems: no conservation of mass/energy 



Some behaviors of simple chemical systems 
(mass action, well-mixed) 

Chemical reaction networks (CRNs) as a programming language…  
  …use the formalism prescriptively, not descriptively… 

• Mathematically equivalent to Petri Nets, Vector Addition Systems, etc. 

e.g. Petri (1966); Karp (1969); Goss & Peccaud (1998) 

• Can implement arbitrary sequential digital logic circuits 

e.g. Magnasco (1997) 

• Can implement (nearly) arbitrary dynamical system behaviors 

e.g. Korzuhin (1967); Klonowski (1983) 

• Can can simulate Turing machine computations with arbitrarily small error 

        e.g. Soloveichik, Cook, Winfree, Bruck (2008); Cummings, Doty, Soloviechik (2014) 

• Etc. etc… 

But does every formal chemical reaction network exist? 



Compiling CRNs into DNA 
CRN program: 

Initial conditions: 

5 A’s 
3 B’s 
10 C’s 

Soloveichik, Seelig, Winfree, PNAS, 2010 



Some behaviors of simple chemical systems 
(mass action) 



High-level languages 

Chemical reaction 
networks 

Domain-level 
specification 

DNA sequences 

Digital circuitry, analog differential equations, 
Turing machines, finite state machines, ... 

sequence design 

low-level compiler 

synthesis 

DNA molecules 

Domain-level 
reaction networks 

reaction enumerator 

proof/disproof 
of correctness 

Sequence-level 
markov chains 

probabilistic 
assessment 

secondary structure 
simulator 

high-level compiler 

A compiler & verification hierarchy 

Experimental 
data 

behavioral 
assessment 

laboratory 
experiments 

Kinefold 
Multistrand 

Visual DSD 
Peppercorn 

Nuskell 

NUPACK, … 
KinDA 

Nuskell 

Chemical reaction 
network behavior 

semantics 

COPASI, … 
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Abstractions for molecular programs 
NUPACK: rigorous thermodynamic and kinetic sequence design and analysis 

5	
  nm	
  

material = rna    
temperature[C] = 23.0
sodium[M] = 1.0

structure stickfigure = 
    U2D8(U2D6(D6(U3+
      )D3U9D6(U2+U1))U2D8(U2+U1))U1

domain a = AUGC N23
domain b = N29
domain c = N20 GCGCU
domain d = N18

stickfigure.seq = a b c d
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Zadeh, Steenberg, Bois, Wolfe, Pierce, Khan, Dirks, Pierce, J Comp Chem, 2011 
Wolfe, Pierce, ACS Synthetic Biology, 2015 



Nuskell: A verifying compiler for  
domain-level DNA implementations of 

chemical reaction networks 

"Compiling and verifying DNA-based chemical reaction network implementations" 
Seung Woo Shin, Master's Thesis (2011) 

 
"A bisimulation approach to verification of molecular implementations of formal chemical reaction networks" 

Qing Dong, Master's Thesis (2012) 
 

"Verifying Chemical Reaction Network Implementations: A Pathway Decomposition Approach" 
Seung Woo Shin, Chris Thachuk, Erik Winfree, arXiv:1411.0782 (2014) 



Verification pipeline 

X3 + X4 k1! X5

X5 k2! X1

X1 + X2 k3! X3

X3 + g1 k4! i + g2

i + g2 k5! X3 + g1

i + x4 k6! j + w1

j + g3 k7! X5 + w2

X5 + g4 k8! k + w3

k + g5 k9! X1 + w4

X1 + g6 k10! l + g7

l + g7 k11! X1 + g6

l + X2 k12! m + w5

m + g8 k13! X3 + w6

Target CRN 

compile 
Claimed implementation 

X1

X2

X3

X4

reaction 
enumerator 

= ? 

Implementation CRN 



Multistrand:  
stochastic simulation of the kinetics  

of multiple interacting nucleic acid strands 

"Stochastic Simulation of the Kinetics of Multiple Interacting Nucleic Acid Strands" 
Joseph M. Schaeffer, PhD Thesis  (2013) 

 
"Stochastic Simulation of the Kinetics of Multiple Interacting Nucleic Acid Strands" 

Joseph M. Schaeffer, Chris Thachuk, and Erik Winfree, LNCS 9211 (2015) 
 

Hands-on live demo:  http://www.multistrand.org 



Secondary Structure State Space 

The Box 

((.((.((.((((.......)))))).)).(.+).)) !

* same energy model as NUPACK 3.0 



Kinetics: 
continuous-time 
markov chain 
representing a 
random walk on the 
energy landscape 
for The Box. 

Elementary steps: 
single base pairs 
form and break. 

Move selection: 

Detailed balance: 



Kinetics: 
continuous-time 
markov chain 
representing a 
random walk on the 
energy landscape 
for The Box. 

Elementary steps: 
single base pairs 
form and break. 

Move selection: 

Detailed balance: 

Unimolecular 
   (i to j is downhill) 
 
Bimolecular 
   (i to j is joining) 

(Metropolis) 



Simulating a single strand



KinDA: design and analysis of kinetics for 
domain-level DNA strand displacement systems 

 
"Automated Sequence Analysis for Domain-level DNA Strand Displacement Systems" 

Joseph Berleant, Chris Berlind, Joseph Schaeffer, Niranjan Srinivas, Chris Thachuk, Erik Winfree (in preparation) 



Case Study: Entropy-driven catalyst 

2 3 4 
5* SUBSTRATE 

4 5 
INPUT 

1 2 
OUTPUT 

32 4 
5* WASTE 4 5 

INPUT 

CATTCAATACCCTACG 

CTTTCCTACA 
CCTACGTCTCCAACTAACTTACGG 
CCCT 

TCTCCA 
CCACATACATCATATT 

4 

1 
2 
3 

5 
6 

AGTCTTAATTGACCCA 

AAACGCGAAA 
CTTTAATATGGATTTTGCACCAGT 
TTCC 

CAAAGA 
ACAAGAGCCTTGATTA 

DOMAIN PUBLISHED RANDOM 



Case Study: Entropy-driven catalyst 

1.2x107 M-1s-1 
4.4x106 M-1s-1 

18 s-1 
73 s-1 

PUBLISHED 
RANDOM 

91% 

 9% 

56% 

 44% 

CCTACGTCTCCAACTAACTTACGGCCCTCATTCAATACCCTACG
....(((.............))).....................

CTTTAATATGGATTTTGCACCAGTTTCCAGTCTTAATTGACCCA
........(((........))).......(((......)))...



Programming Dynamical Behaviors 
in Chemical Systems using 

 DNA Strand Displacement Cascades 

Niranjan Srinivas, James Parkin, Georg Seelig, Erik Winfree, David Soloveichik   
(in preparation) 
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Try it for: 
B + A à 2B 
C + B à 2C 
A + C à 2A 

 



A test tube of synthetic DNA molecules 
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An enzyme-free oscillator: the Displacillator a b c
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Niranjan Srinivas, James Parkin, Georg Seelig, Erik Winfree, David Soloveichik  (in preparation) 

Rock-Paper-Scissors CRN 



Toss a mixture of DNA in a test tube… 
What can it do? What can’t it do? 



What can information-based chemistry do? 

chemistry 

information-based 
chemistry 

Life on Earth 

(biology) 

molecular 
programming 



Why Molecular Programming? 
 
 
Chemistry will be the new information technology of the 21st C 

–  Information encoded in synthetic molecules can direct processes such 
as folding, self-assembly, circuitry, and machinery, thereby providing 
programmable control of a wide range of chemical systems. 

 

It will transform industry, much as electronics did in the 20th C 
–  Potential applications synthesizing programmable materials, devices, 

diagnostics, therapeutics… anything that chemistry can do… that will 
be empowered by pervasive embedded information processing and 
programmable behaviors.  
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