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Convergence of HPC, data science, & data enabling transformative advances at the
intersection of observational and simulation sciences

S=ssese Exascale
] I 11 T

360,000 cores + GPU acceleration

Enveloped virus
160 mil+ atoms
1-100 ps

Ranger
60k CPUs

2007
2 mil atoms
3k CPUs i ator
HP 735 >Gl Origin 2002
12 CPUs 128 CPUs ATPase

500k atoms

1993 1997 10s ns

protein ion channel
10k atoms 100k atoms
100s ps 1ns

time 100 nm, 160 million atoms, pys
—




Chlamydia

!
Trypanosomiasis




Simulations Reveal Target Flexibility

5% exposed,
matches NMR

Wassman, Baronio, Demir, et al. Nature Comm., (2013)



New Site Opns

> 95 X-ray structures “Open” MD structure



New Site is Druggable

Wassman, Baronio, Demir, et al. Nature Comm., (2013) Vajda et al., Computational Solvent Mapping: http://ftmap.bu.edu/




Our computational approach discovers more novel p53 reactivation
compounds in 6 months than all the research efforts of the previous 20

years combined
Receptor
Ensemble Ligands
1 structure ZINC Leads Now cancer cell with p53 mutant

ANTE from MD Library
S with Cys124 ~1.8M compounds

pocket open e 4 ."'v‘a
solvent (LTSRN
AutoDock i :

Vma

G245S ~R175H

- 12 hours

Post-Processmg Reactivation S
ADMIE filtering of top-ranking 1% compound §§ 30

Data Mining
138 compounds with 15/138 compounds tested in mammalian cancer cell lines
diverse scaffolds rescue p53 activity and kill cancer cell

selected

v
Experimental ACtavaI O n

Testing



Challenges

* Reproducibility
* Scalability
* Interoperability



THE CURE

L

COMPUTE  Scalable Drug Discovery Kep'éeri"\._

reactivation
compound

Directory Creater Ligand Parameterization Ligand Simulation Gromos Clustering

SEESLIONE =

i inactive - . .
actl\/eN sanceamitari ?ctwated Antechamberl Gaussian Log File Antechamber2
PREVENTS TUMOR GROWTHS
Cell Cycle Arrest String Constant Tleap

Szz:::::?\i:e trigger output
e source leaprc.ff99SB n
: source leaprc.gaff
vec]. | loadAmberPrep Sl.prepc BENEFITS:

> loadAmberParams Sl.frcmod
E:v':g;b ¢ Sl-new.pdb Increase reuse
= e Reproducibility
e Scale execution,
problem & solution
 Compare methods

* Training /

Closed in PDB crystal structure (1tsr-b) MD exposes binding pocket

cell proliferation
o o o o

. '.
15 new reactivation compounds

leong et al., 2014



e

fLcowdte  AMBER GPU Molecular Dynamics Workbench ~ Kepler==-

DDF Director

Computer-Aided Drug Discovery Workflow using GPU-Enabled Molecular Dynamics E reTemy SetorTypedCamRCsEACTor " Configue |
UserC U K _switch.conf.usr Configure
defauleC T N vt e
. . . tempO(Target Temperature): 3100 Configure
Equilibration Production ‘ ProductionRMSD diSimulation time-step: 0,002 Configure
inputDir, ljob ntpr: 5000 Configure
triggerpy $inputFOIder nstlim(Simulation length): 15000000 Configure
ntwx: 5000 Configure
gamma_In(Collision Frequency): 5.0 Configure
- - . Help Preferences. Defaults Remove Add - Commit
MD Configuration Parameters Shared Exegutfon Parameters L xecution Parameters ]
o tempO(Target Temperature): 310.0 oIdeAr. /Use_rs/spurawat/TestInput .QrBERHO ~lqcal: /soft/amber/latest/AmberT o053 ot oM
@ dt(Simulation time-step): 0.002 / DIR: cor o NP: nxtrst (-0 [SinputDir/mdS.rst
M nStlim(%rgglation length): 50000 ® CMPD: p53 _2inc07135644 ~ outfile (-0): SinputDir/mds.out Local Execution
e ntpr: 5 . CPUCH < meters outnc (-x):|SinputDir/md5.nc
e ntwx: 5000 { LocalExecution [RE3US prerst (-c)  |§inputDir/md.rst Option
® gamma_In(Collision Frequency): 5.0 DDF Director job .sdsc.edu top (-p): SinputDir/p53_zinc07135644op
T .
@ maxcycValue: 2000 @ " o i So—— ssh/id_rsa o —
'r/bin
JS/gle/élmb[E GPU Execution Option ]
'GPUactor

ThrowExc AMBERHOME: |/ cm/shared/apps /amber14

IdentityFile: |/Users spurawat/.ssh/id_rsa
Scheduler:  SLURM

TargetHost: aro.ucsd.ed
«commandLine: Sprogram _SadditionalOptions
numOfjobs: 3

)ad amber remoteDir: {/home/spurawat/ GPUactor

»ad cuda/6.5

/BENEFITS: \

* Flexible configuration of MD job parameters
* Scalability at compound level

* Computing platform portability

* Increased reuse

! Provenance /
Purawat et al., Biophysical Journal 112 (12), 2469-2474. doi:10.1016/j.bpj.2017.04.055 (2017)

Local: NBCR Cluster Private Cluster: User Owned T '
Resources Resources L

¢ inl +"/prodOutput’ + coun...
SDSC °"
(comen amazon

web services

Thov

(Stampede)




Challenges

* Reliability



>, Drug Design Data Resource (D3R)

blinded prediction challenges to drive advances in CADD

Central Goal: Utilize previously unpublished datasets as benchmarks for developers
of protein-ligand modeling technologies

Synergy with Public Databases: Public release of more industrial crystal structures
and affinity data

Broader Goals: Utilize blinded datasets to drive improvement of all CADD
technologies and to foster education and dissemination of methods

More predictive CADD methods benefit everyone!



Grand Challenge 2015 Grand Challenge 2

35 participants, 355 submissions 49 participants, 262 submissions

HSP 90: focus on potency predictions
Data from Abbvie and Carlson’s CSAR project Farnesoid X Receptor (FXR):

8 cocrystal structures (.6-2.0 A resolution) poses and potencies
180 IC50s (5 nM-20 uM) WYV Data from Roche

Thr-ee ser|.e53 pen2|m|dazolones, . % 36 cocrystal structures (resolutions
aminopyrimidines, benzophenone-like A tﬁ <2.6A)
" )

Varied water-mediated interactions; open/closed #3% 102 1C50s (0.3 NM-260 M)

conformations Three series + misc: sulfonamides,
benzimidazoles, spiros
Helix shifts and varied water-bridges

‘,4:\\'(

MAP4K4: focus on pose predictions
Data from Genentech

30 cocrystal structures (1.6 — 2.5 A resolution)
18 IC50 data (3.1 nM - 10 uM)

Diverse chemotypes binding in ATP site
Open/closed P-loop structures




> Toward Greater Statistical Power
hﬂ Continuous Evaluation of Ligand Pose Predictions (CELPP)

Saturday
PDB pre-release D3R scripts
InChls Eliminate trivial ligands
Protein sequences Pick protein structures

Forthcoming IDs

Wednesday

D3R evaluates predictions
against released structures

Sunday

D3R releases InChls and protein
structures for docking

D3R opens for submissions

Tuesday

D3R submission window closes
PDB releases structures



Number of heavy atoms

#» CELPP Challenges and Participants
hﬂ >2,000 cross-docking cases over 64 weeks

300
250
200
150
100

Five “in-house” docking servers
Autodock Vina

| Two GLIDE methods

S OE Fred

wl — 7 T 7 T T ] rDOCK

Four anonymized external participants

In 64 weeks of running CELPP, already have
order of magnitude more data / statistics
than the whole 9 years of the previous

0 5 10 15 20 25 30 350 20 40 60 80 efforts com bined

Number of rotatable bonds




6% Capturing Complex Workflows

Method 1
OMEGA, SHAFTS, Amber11

Method 2
GLIDE-CCDC-GOLD, Amber14, MMGBSa

Method 3

WaterMap, SHAPE Screening, Structural Interaction
Fingerprint, DFT/B3LYP/6-31G*, GLIDE-SP-XP, Induced-fit-
docking, Emodel/GlideScore-SP, Binding Pose
Metadynamics

“~——» Next up:
CELPP+ for binding affinity predictions

Full description of methods
Reproducibility
Evaluation on new datasets

Application to drug design projects

MOLSSI






Multiscale methods brldge gaps across scales

Molecular & Sub-Cellular Cell Tissue
Macromolecular

!

Spatial and
Temporal Scales

Pushing molecular Routine Routine in
imulation.... .
simutation in 5 years 10 years?




Volume 2, Article No. 0148, 2018

Algorithmic Challenges PERSPECTIVES

. . . nature
Multiscale methods in drug design REVIEWS

bridge chemical and biological CHEMISTRY
complexity in the search for cures

Rommie E. Amaro and Adrian J. Mulholland

Abstract | Drug action is inherently multiscale: it connects molecular interactions
to emergent properties at cellular and larger scales. Simulation techniques at each
of these different scales are already central to drug design and development, but
methods capable of connecting across these scales will extend our understanding
of complex mechanisms and our ability to predict biological effects. Improved
algorithms, ever-more-powerful computing architectures and the accelerating
growth of rich data sets are driving advances in multiscale modelling methods
capable of bridging chemical and biological complexity from the atom to the cell.




3D structural data to build visible virtual cells

Electron crystallography Single-particle analysis Electron tomography Serial Section EM

2-D crystals of membrane proteins Purified molecules in Pleomorphic samples, Resin-embedded samples Serial Block EM
in their native environment solution ~0.2-10 MDa e.g., cells and organelles Resin-embedded

tissues

dlamond knife

Routine dataset is 1.2 trillion
pixels
e 100,000’s of structures in
a single dataset
20




Challenges & Opportunities

* Data Complexity
— imaging segmentation & refinement

— extracting signal from rich datasets: cryoEM,
diffuse scatter

* Data integration

— Bringing diverse datasets together



Cell-centered, data-centric modeling framework

structure
(X-Ray,NMR,EMDB)

(torhography, fluorescence)
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ce definition, tesselation

Membranes: Lipid bilayers with realistic geometries
Surfa
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LipidWrapper: Durrant JD, Amaro RE (2014) PLoS Comput Biol 10(7): €1003720.



Moving from single protein to whole virus

Fully Atomic
Reconstructions

PyMolecule
LipidWrapper
CellPACK

Alasdair Steven, NIH

Improved sense of the physical arrangement of biological entities in complex biological milieu
Enables simultaneous study of multiple components

Mesoscale molecular models as a platform for other simulation approaches (e.g., Brownian dynamics,
Mcell, lattice boltzmann MD)

... leads us to new avenues of investigation, not possible on the single protein scale

Johnson et al, Nature Methods (2014),; Durrant & Amaro, PLOS Comp Bio (2014).




Petascale Molecular Dynamics Simulation of Fully
Lipid Enveloped Virus

» Largest biological system ever
simulated at atomic level (~160
million atoms)

* 45 ns/day using 114,688 CPUs

» 158 ns total simulation

» Saving every 20 ps = ~25 TB of data

» Collaboration with TCBG P41




~ 160 million all-atom MD simulation with NAMD on Blue Waters

i %#ﬁﬂ? *'




Challenges

* Accessibility
- To increasingly large datasets
- To the Big Machines (eg Blue Waters, Titan)
- To farms of GPUs

* Visualization, analysis methods, etc
 Data interaction at scale



Dynamics in the packed, crowded virus different

Single Glycoprotein Terminal Virion
200

-
(=
o

o

Interactions with
neighboring
molecules matter

“Hemagglutinin

Neuraminidase




Cell-scale Markov state models of protein dynamics

‘k;" _
| I’iﬁ%ﬂlﬁﬁ

Ul

Markov state models define metastable states
and transitions between states

Allows one to extract long timescale dynamics from many short
timescale simulations

Swope, Pande, Schutte, Noe...




MSMs characterize loop dynamics & druggable pockets

Virion has 30 NAs, 236 HAs
Enough sampling to make a
Markov state model (MSM)
of NA loop dynamics

2-state Macrostate model
open/closed

MEPT for the 150-loop:
open to closed52.9ns
« closed toopenl98.4 ns




Impact of Sea Spray Aerosols on Chemistry of the Environment

Multiscale Paradigm of Chemical & Biological Complexity

Atmospheric Aerosol

Processes

Water Uptake

Cloud Droplet
Formation

Ice Nucleation

Structure & Optical Properties
Reactivity \_ J

CAICE theory



Data Driven Simulations Bridge Biological & Chemical Complexity

Ensembles of Molecular Models
Micron diameter

Input Data Sets

Protein Data Bank Particle Composition

TIMFHI

Interface Properties

i

Cell Transfer




When computational biophysics meets sea
spray aerosols...

center for aerosol impacts on
chemistry of the environment
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Experimental Continuous Data
Design Access, Integration

and Transformation

Collaborators: Rommie Amaro, Kim Prather, Amarnath Gupta, UC San Diego Built-in Scientific
SAN DIEGO likay ALTINTAS, Ph.D Communication and
SDS SUPERCOMPUTER CENTER y S Reproducibility

Assurance




Problem solvin 4 o
g AM B E R G P U , SCPXfer ‘ CmpdStream MinimizationHeatmg Equilibranon Produr.tion

happens at the KeplerZ+, MD Workflow
application T
i n te g rati o n I eve I nmm A Kepler Workflow Tool for Reproducible R | T— g

AMBER GPU Molecular Dynamics, Purawat,
leong, Malmstrom, Chan, Yeung, Walker,

\Altintas, Amaro.. DOI: 10.1016/j.bpj.2017.04.055 J
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Ensembles of Molecular Models

Input Data Sets Micron diameter
g |2 000 |

‘ % it : u Data Acquisition Data Generation Data Analysis &

g [NT. ¥ B T N\, Storage
1 in oy S ‘gé

, = b '
cellPACK i ; //;ii,'m $ Iteration <

External Data
Integration
Iteration < Event Selection

Scientific Communication & Reproducibility Assurance

Computational
W Parameters

CHARMM-GUL

SDS gﬁﬂE?zlcEgr(v)\PUTER CENTER llkay ALTINTAS, Ph.D. UC San Diego




Challenges

Student / postdoc / scientist training!



http://amarolab.ucsd.edu A C k n OWI e d ge m e n t S http://nbcr.ucsd.edu

Cameron Abrams, Drexel

Rob Elber, UT Austin

Frank Noe, Freie Univ Berlin

Gary Huber, UCSD

Adam Van Wynsberghe, Hamilton College

/i Lane Votapka Ben Jagger

O National Institute of
UC San Dlego m) General Medical Sciences

Basic Discoveries for Better Health

THEORETICAL and COMPUTATIONAL

NIH DIRECTOR'S Bioruysics Grour

NEW INNOVATOR

AWARD

" »¥ COMPUTE
) THE CURE
y 2

\\||g B) National Institute of Allergy and Infectious Diseases
Leading research to understand, treat, and prevent infectious, immunologic, and allergic diseases.
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