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The Materials Genome Initiative (MGI) advanced a new paradigm for materials discovery, 
namely that the pace of materials discovery could be accelerated via complementary efforts in 
theory, computation, and experiment. Along with numerous successes, new challenges are 
inviting researchers to refocus the efforts and approaches that were originally inspired by the 
MGI. In May 2017, the National Science Foundation sponsored the workshop “Advancing and 
Accelerating Materials Innovation Through the Synergistic Interaction among Computation, 
Experiment, and Theory: Opening New Frontiers” to review accomplishments that emerged from 
investments in science and infrastructure under the MGI, identify scientific opportunities in this 
new environment, examine how to effectively utilize new materials innovation infrastructure, and 
discuss challenges in achieving accelerated materials research through the seamless integration 
of experiment, computation, and theory. This article summarizes key findings from the workshop 
and provides perspectives that aim to guide the direction of future materials research and its 
translation into societal impacts. 
  



INTRODUCTION 
In 2014, The Materials Genome Initiative1 (MGI) challenged the scientific and engineering 
communities to accelerate the pace of materials discovery by synergistically combining 
experiment, theory, and computation in a tightly integrated, high-throughput manner. In this 
approach, vast materials datasets could be generated and analyzed, researchers could identify 
the attributes underpinning material functionality, and the discovery time for new materials could 
be reduced considerably. While the drive to uncover the so-called “materials genome” is the all-
encompassing goal of the MGI, the impetus to find and develop new materials that solve 
problems and improve societal well-being has been at the heart of human advancement for 
thousands of years. Indeed, the materials available to us (and those that are not) affect the ways 
we think about, interact with, and manipulate the world around us.  Prior to the Industrial Age, it 
was unimaginable that the coordinated movements of metals as mechanical parts, as 
exemplified by Charles Babbage’s difference engine or the Scheutzian calculation engine, could 
be used to accelerate basic computations by orders of magnitude.  Similarly, the creators of 
such mechanical computers could not have envisioned further increases in computational power 
enabled by the development of semiconducting materials for transistors. Further still, those 
working on the Apollo 11 guidance computer would not have wagered that more than half of 
Earth’s population in 2018 would have devices in the palms of their hands featuring 1000x more 
computational power than a computer developed to guide spaceflight.  Yet, progressively, 
materials discovery and engineering ingenuity open new frontiers for technological 
advancement. Today, we have realized the creation of metallic hydrogen, devised multijunction 
photovoltaics to exceed the Schockley-Queisser limit, succeeded in pinpoint gene editing, and 
developed an infrastructure that supports near instantaneous access to petabytes of information 
with the click of a button.  
 
Analogous to these past developments, the investment in the research and discovery of new 
materials today will dictate the directions and development of our society in the immediate future.  
Flexible biosensors could be implanted in vivo and harmlessly degrade when their job is done.  
Infinitely recyclable plastics could be created from excess carbon dioxide to enable a waste-free 
circular materials economy.  Materials that harvest static electricity and thermoelectric power 
derived from a day’s walking could be integrated to power personal electronic devices.  3D 
printers could instantly print bone implants, braces, or contact lenses during a visit to the doctor’s 
office. New high temperature superconductors could enable rail transport capable of reducing 
cross-country travel times by a factor of 10, and the development of new semiconductors 
exploiting the laws of quantum mechanics could lead to computers capable of predicting the 
weather a month in advance, making unbreakable communications, or developing cures for 
malignant, currently untreatable diseases. These potential developments are based on our 
current conception of possibilities for manipulating the physical world, which will no-doubt be 
drastically modified by the development of new materials, the same way the internet and its 
ramifications were not envisioned prior to the advent of the transistor. 
 
Integral to the development of new materials will be an entirely new way of doing, recording, and 
sharing science.  As a representative example, we envision a scenario involving the high-
throughput screening of soft matter, an area of enormous promise that is not as developed as 
other disciplines in its amenability to high-throughput screening due to the inherent disorder of 
these materials.  This scenario involves a researcher in corner A of the country submitting a 
query to a user facility that synthesizes and characterizes a new class of polymers in a high-
throughput manner using advanced, modular robotics. The results automatically populate a 
centralized polymer database, reporting successful, and failed, synthetic and processing routes, 



alongside a set of typical material properties.  As these data are published online in a freely 
available, shareable and standardized data format, a computational researcher in another corner 
B of the country uses the experimentally measured database of functional properties to calibrate 
a new computational model that predicts material properties on the basis of molecular structure. 
Within an inverse-design optimization framework, that researcher submits this high-throughput 
computation request to a user-facility cloud computing system available on a core/hour basis to 
identify five chemical structures that optimize the target material property. After obtaining these 
results, the set of all considered molecular structures along with the five candidates, which are 
flagged to the community, are posted in the online database alongside the experimental results.  
Meanwhile, somewhere else, a researcher at location C with expertise in polymer processing 
observes both the successful and failed processing routes posted earlier and refines a data-
driven model capable of predicting the optimum processing route given an input molecular 
structure.  Having seen the flagged molecular structures from the researcher in corner B online, 
this last individual at location C determines three processing protocols for three of the flagged 
structures and places these in the database alongside the corresponding molecular structures, 
and the researcher at location A uses these structures to seed the next phase of their 
experimental search.  This is our vision of the MGI paradigm at play in future materials research. 
 
In the present, the MGI has already enabled critical advances in materials science. Three key 
examples, relating to polymeric self-assembly, polar metals, and organic light-emitting diodes 
(OLED), are highlighted in Figure 1. In a first example (Fig. 1a),  supported by the Center for 
Hierarchical Materials Design, Khaira et al. combined physics-based molecular modeling, small-
angle x-ray scattering, and evolutionary optimization to accurately deduce the molecular 
structure of experimental films in unprecedented detail2.  Compared to previous geometric or 
shape-based models, this closed-loop approach, in which physically meaningful simulation 
parameters are iteratively updated based on experimental feedback, which can be generated 
concurrently, exemplifies a new paradigm for interpreting and understanding experimental 
phenomena with the aid of simulation and theory.  In a second example (Fig. 1b), enabled by 
the  Designing Materials to Revolutionize and Engineer our Future (DMREF) program, Kim et 
al.3 applied quantum mechanical simulations to design, in silico, a room-temperature polar metal 
exhibiting unexpected stability, and then successfully synthesized this material using high-
precision pulsed laser deposition. This theory-guided experimental effort revealed a new 
member of an exceedingly rare class of materials, which could be critical towards new 
technologies requiring unusual ferroelectric behavior. In a third example (Fig. 1c), Gomez-
Bombarelli et al. utilized high-throughput virtual screening combining theory, quantum chemistry, 
machine learning, cheminformatics and multiple methods of experimental characterization to 
explore a space of 1.6 million OLED molecules,4 resulting in a set of experimentally synthesized 
molecules with state-of-the-art external quantum efficiencies.  This tightly-integrated approach 
to experiment, computation, and theory is characteristic of the MGI, and represents a stepping 
stone for the systematic exploration of organic chemical space in a variety of technological 
applications.  All three examples highlight the tremendous potential of the MGI paradigm for 
materials discovery when experiment, computation, and theory act synergistically to design new 
materials with target properties. 



 

 
Figure 1. Representative examples of successful MGI research. (a) A closed-loop approach for 
interpreting structure-formation in block-copolymer self-assembly using physics-based 
modeling. (b) Geometric design of new polar metals using theoretical insight from ab initio 
simulations and high-precision experimental synthesis, and (c) the design of new organic light-
emitting diodes using combined high-throughput screening and experimental approaches. 
Images taken and/or adapted from Refs. 2–4. 
 

The MGI, through strategic investments in research, education, and infrastructure, has also 
impacted many other key application areas. Data-driven approaches have led to multiple 
breakthroughs in glassy materials5,6 and a better overall characterization of the glass genome7.  
High-throughput screening, featuring a combination of experimental and computational efforts, 
have been realized not only in the context of high-performance OLED materials,8 but also metal-
organic framework (MOF)/zeolite-based porous materials9,10, lithium ion conductors11, and 
photoanodes for solar fuels12.  Machine-learning has been used to predict numerous new 
thermoelectric materials13 and nearly 80 new half-Heusler piezoelectric transducer materials14. 
All of these discoveries represent the impact of the MGI’s data-driven, integrated approach to 
materials discovery, and we are just beginning to observe the fruits of these investments across 
a variety of sub-disciplines within materials science and engineering, as is outlined throughout 
the remainder of this document.  At the same time, major challenges for materials discovery 
remain: Data-centric methodologies and machine-learning techniques must be leveraged more 
effectively along with more advanced automation techniques for experimental synthesis and 
characterization. Infrastructure is required to populate and review databases. Computational and 
theoretical models must accurately address new physics and contend with longer timescales 
and larger lengthscales. And no steps should be taken in isolation, but considered by academic, 
government, and industrial institutions with combined theoretical, computational, and 
experimental perspectives. 
 
In this article, we summarize key findings from the May 2017 workshop “Advancing and 
Accelerating Materials Innovation Through the Synergistic Interaction among Computation, 
Experiment, and Theory: Opening New Frontiers”, held at and sponsored by the National 
Science Foundation. The workshop brought together more than 100 experts across a variety of 
sub-disciplines (See Appendixes A and B) to review successes from the Materials Genome 



Initiative and identify scientific opportunities related to materials discovery. The workshop was 
organized into six different application domains: (i) Materials for Health and Consumer 
Applications, (ii) Materials for Information Technologies, (iii) New Functional Materials, (iv) 
Materials for Efficient Separation Processes, (v) Materials for Energy and Catalysis, and (vi) 
Multicomponent Materials and Additive Manufacturing. In each section, we highlight successes, 
opportunities and challenges, and aspirational perspectives as they pertain to that application 
area, with emphasis on facets related to MGI-inspired research paradigms. In addition, we 
outline many unifying themes critical to the advancement of materials discovery.  Through this 
conspectus, we trace the current trajectory of the MGI to new frontiers for materials discovery. 
 
MATERIALS FOR HEALTH AND CONSUMER APPLICATIONS 
Health and consumer applications feature myriad materials—including polymers, liquid crystals, 
complex fluids, oxide glasses, and biologically derived or biologically inspired materials—with a 
diverse array of functional properties that make them ubiquitous in modern life. Such materials 
are often referred to as “soft”. They are highly susceptible to the effects of external fields and, 
as such, can be tuned to deliver specific functions on demand. Soft materials are used at 
hospitals in biomedical devices and drug delivery vehicles; purchased at the supermarket in as 
part of foods, drugs, and personal care products; used as structural parts and protective coatings 
for vehicles, buildings, and infrastructure; and featured in high-end electronic devices as 
elements of sensors, displays, and batteries. Further advances related to these and other health 
and consumer products will be facilitated by synergistic efforts motivated by the MGI that enable 
successful navigation of the nearly infinite design space provided by exploitation of covalent 
chemistry and physical interaction, both at equilibrium and far from it.  
 
Successes 
 
The MGI style that tightly integrates high-throughput experiment and computation has yielded 
critical advances in the ability to understand and tailor the physical properties of materials 
important to health and consumer applications. For glassy materials, which appear in a variety 
of industrial technologies, researchers have utilized machine learning to mine a large sampling 
of glass configurations to identify descriptors that strongly correlate with rearrangement 
dynamics5,6, revealing insights that did not exist prior to the MGI.  Data-mining techniques 
applied to a vast range of systems have also led to fast and accurate models that predict bulk 
mechanical behavior solely from atomistic structure,7 and strong integration of computational 
modeling and experimental characterization in the MGI style has enabled the enhanced 
understanding of the structure and processing of organic glasses15,16 (Fig. 2a), leading to the 
development of artificially aged glasses with unprecedented stability17. There have been 
revolutionary advances regarding templating and fabrication of complex structures, as 
evidenced by the creation of complex hierarchical patterns using liquid crystals and controllable 
anchoring18,19 and the design of photonically active architectures20, the templating of two-
dimensional patterns21 and complex lattice mesophases22,23 using block copolymers (Fig 2b), 
and advances in DNA origami24 and DNA-modulated particulate assemblies25. In addition to 
generating target structures, computational and inverse design frameworks advanced within the 
MGI have enabled the design of materials with astonishing properties, such as architected 
material composites with tunable negative thermal expansion26 or negative stiffness27, 
mesostructured soft materials foldable into shapes of nearly arbitrary complexity28,29 (Fig 2c), 
and atomic-scale mechanical metamaterials, like graphene ‘nano-kirigami’30, with previously 
unrealized lengthscale- and temperature-dependent elastic behavior31. Based on MGI 
paradigms, combined computational and experimental approaches have augmented our 



understanding of ion-transport phenomena in novel polymer electrolytes32–34, further resulting in 
efficient screening models35 and new design strategies36,37. Graph-based algorithms have been 
developed for rapidly screening the charge percolation properties of molecular networks, 
accelerating characterization of multiscale charge transport and enabling MGI data-driven 
screening techniques.38–40 The tight integration of computation and experiment has led to greatly 
improved understanding of the behavior charged polymer complexes, solutions, and brushes 
mimicking biological functionality41–43. Finally, a burgeoning interest in active materials—often 
dense collections of self- or mutually-propelling particles—has utilized the MGI’s integration of 
simulation and experiment to uncover emergent properties, enabling the discovery of generic 
mechanisms that couple hydrodynamic flows and the motion of topological defects in dense 
motile states44,45 (Fig 1d) leading to the  classification of new modes of surface instability of 
cohesive clusters of actively propelled particles46.  
 

 
Figure 2. Recent accomplishments from soft matter MGI approaches. (a) Simulation of a small 
molecule glass highlighting oriented materials as colored15; (b) SCFT prediction of block 
copolymer phases including the Frank–Kasper σ sphere-forming phase23; (c) architected soft- 
metamaterial in the shape of an orchid.28,29; (d) simulated and measured spontaneous flow of 
topological defects in active microtubule condensates44  
 
Challenges & Opportunities 
 
Create better theoretical and experimental techniques for characterizing soft materials 
processes. Most materials for health and consumer applications are processed and used at 
conditions far from thermodynamic equilibrium, and this processing often imparts advantageous 
materials properties. Efficient simulations reporting on the formation of non-equilibrium structure 
combined with in situ experimental characterization techniques, which can be used to validate 
proposed models, would greatly accelerate the development of processing strategies and deliver 
a revolutionary solution to the inverse design problem, as applied to soft materials. A key 
challenge in this area is the modeling of kinetically dependent structure formation, for which new 
methods are needed.  
 



Extend computational synthesis techniques to macromolecular synthesis. Improving 
computational guidance for the synthesis of soft materials would be very valuable. Although 
significant steps have been made using machine learning to predict outcomes of simple organic 
reactions47,48,  extending this capability to include a larger range of chemical knowledge and 
macromolecular synthesis would democratize chemical synthesis and accelerate our validation 
of theories for new chemistries. 
 
Develop materials with complexity approaching that encountered in nature. Despite 
enormous advances in developing synthetic self-assembled structures, a divide remains 
between the complexity achieved by nature versus that achievable in the laboratory or on a 
computer. A biological catalyst works by structuring reactants with picometer accuracy using a 
complex substrate that is itself self-assembled from a protein strand; the soft materials 
community must extend its efforts from inert materials such as glassy block copolymers that 
readily self-organize, to materials that have intrinsic function, as well as order at molecular, 
mesoscopic, and macroscopic lengthscales. The ability to design and program the finite 
dimension of self-assembled structures over multi-building block dimensions has shown exciting 
progress (Fig. 3) yet remains an open challenge whose solution may well yield transformative 
new routes to a variety of scalable functional materials, including injectable biomedical scaffolds 
and paintable self-assembling photonic coatings. 
 
Extend simulation methodologies to mimic more realistic processing conditions. New 
models, methods, algorithms, and the corresponding software should be developed for 
simulations of soft materials at equilibrium and far from equilibrium. These efforts should 
encompass length scales ranging from angstrom to hundreds of microns, and should strive to 
couple different physical processes arising across wide ranges of length and time scales. For 
example, capturing the behavior of defects and substrates, which are critically important to 
structure formation, will be necessary to provide useful guidance to experiment; it would be 
desirable to simulate entire heterogeneous systems of self-assembled macromolecules with 
complexity analogous to a cellular membrane49, or even human tissue. This embodies a 
challenge to connect molecular descriptions of soft materials (e.g. polymer, mesogen, solvent 
chemistry) to mesoscale theoretical frameworks that enable efficient modeling on super-
molecular lengthscales. Such connections will require advances in multi-scale computational or 
possibly the use of materials databases that curate reliable measurements and are sufficiently 
populated to enable machine-learning approaches for designing new chemical structures. 
 
Understand chemically and structurally dynamic polymers50. Engineering the dynamic 
rearrangement of soft matter will be crucial to create materials that respond to stimuli and provide 
useful functionality such as self-healing, sensing, and actuation. Some of these properties are 
emergent through the coupling of chemical and mechanical processes via chemomechanics and 
mechanophores51 or evidenced in vitrimers52, but design and applications of such materials 
remains limited. 
 
Identify the role of data for soft matter systems. Although there is consensus that data-driven 
materials research will be at the forefront of future materials design, it is not clear what form this 
will take in the context of soft matterials. While a database of excitation energies derived from 
electronic structure calculations may be useful in one materials context, the relevant set of 
calculations for designing a self-assembling biomaterial is not as simple, or the relevant order 
parameters or descriptors are not even known. As a community, it will be necessary to critically 
assess what role data can and should have when designing complex materials for health and 



consumer applications, identify inherent limitations imposed by the inherently disordered or 
inhomogeneous nature of the studied systems, and design frameworks to overcome or 
circumvent those limitations. 
 
Aspirational Perspectives 
 
A general soft matter inverse design solution will enable the transition of complex self-assembled 
materials from the bench top to the commercial marketplace. With the right tools, it should be 
possible not only to design materials with specific functionality, but also to down-select for 
materials that are amenable to scalable manufacturing methods or even including preferences 
for biologically derived, sustainable precursors and solvents. The result would be a rapid 
replacement of centuries-old incumbent materials technologies with new soft materials that offer 
superior functionality, lower environmental impact53, and potentially lower costs. The ability to 
control self-assembly at arbitrary lengthscales would enable systems with multiple 
functionalities, which either work in concert to perform complex tasks (e.g. energy harvesting, 
transport, and storage), or in a complementary fashion to impart multiple distinct benefits. Such 
multifunctional soft materials will integrate with and augment human biology in the form of 
biomedical devices, wearable sensors, or functional fabrics. They may also be harnessed for 
manufacturing other materials, extending the capabilities of additive manufacturing, reducing the 
energy footprint of chemical reactions, and separations by membranes54. Finally, soft materials 
can go beyond biology by harnessing chemistries that are not possible in aqueous environments 
or near ambient temperatures, and by incorporating new functionalities, such as the 
semiconducting properties of conjugated organic photovoltaics55, that exceed what is possible 
in nature. This may provide a framework to design soft materials that combine typically anti-
correlated properties: materials that are thermally insulating but transparent, lightweight but 
strong, ion-conducting but rigid, or self-repairing but simple. 
 

 
Figure 3. Achievements of hierarchical self-assembly. (a) a 3-D crystal lattice of a tensegrity 
motif from Ref. 24, (b) self-assembly of microlenses resembling a compound eye of high 
sensitivity from Ref.20 , and (c) complex 3D polymer superlattices made by harnessing 
crystallization, hydrophobicity, and selective solvation adapted from Ref. 56 



 
 
MATERIALS FOR INFORMATION TECHNOLOGIES 
Information technology (IT) is one of the greatest triumphs of 20th century science. 
Semiconductors enabled modern IT and are so ubiquitous in our daily lives that the present age 
is often called the ‘silicon age’. Our understanding of the physics of the semiconductor transistor 
began in basic research at Bell Labs, and earned Shockley, Bardeen, and Brattain the Nobel 
Prize in 1956.  Since then miniaturization and material optimization have led to faster and more 
powerful processors, roughly keeping pace with the celebrated "Moore’s Law".  Along with this 
growth of processing power, parallel advances in communication and storage have enabled 
applications of IT to medical diagnostics, international commerce, and the construction of a 
communications network that connects each of us to a global community instantly. 
 
Successes 
 
Both the DMREF and MRSEC programs of the NSF have had a significant impact on materials 
advances related to information technology.  In recent work resulting from the DMREF3, a rare 
polar metal was discovered by a synergistic combination of analytical arguments, first principles 
calculations, materials synthesis, and characterization constructed along the MGI paradigm of 
materials discovery, with the final experimental results informing further developments and 
refinements of the theoretical understanding of that material57.  In a similar vein, combined 
theoretical and experimental efforts enabled by the MRSEC program in the MGI style were used 
to predict, model, synthesize, and characterize nickel oxide systems with a “buckled” lattice 
structure that mimics the electronic features of the copper oxides exhibiting high temperature 
superconductivity58 (Fig. 4a).  Such studies motivate finding analogs in other materials systems, 
which could lead to improved understanding and ultimately a room-temperature superconductor.  
The recent emergence of integrated studies of topological insulators has resulted in a new field 
of materials research and potential applications59,60(Fig. 4b).  Development in ferroelectric 
materials via the rotation of oxygen octahedral complexes61, as well as the examination of 
magnetocaloric materials using zero-temperature magnetic deformation62 (Fig. 4c), have been 
critical in enabling potential future technologies that advance information technology 
infrastructure. 
 



 
Figure 4. (a) DFT-calculated electron transfer and comparison of atomic structure with 
experimental electron density map for the orbital engineering of novel electronic systems, (b) an 
illustration of the optical gating of a topological insulator via UV and red-light exposure, and (c) 
an illustration of the performance of a simple DFT-based computational proxy for screening 
materials based on the gravimetric entropy change upon isothermal application of a magnetic 
field. Images taken and/or adapted from Refs. 58,60,62, respectively. 
 
 
Challenges and Opportunities 
 
Accelerate the development of new algorithms for correlated electron systems. While ab 
initio density functional theory (DFT) calculation have advanced considerably over the past few 
decades, new correlated electron techniques have recently come to the fore. As one example, 
advances in dynamical mean field theory (DMFT), have become increasingly adept at capturing 
the influence of (especially Coulomb) interactions on a single-particle band structure. The field 
has advanced sufficiently to predict some emergent properties of solids and could be employed 
more widely to study new, interesting correlated electron systems.  Other algorithms in this 
category include quantum Monte Carlo and density matrix renormalization group.  There is an 
emerging opportunity now to move these higher accuracy, full Hilbert space techniques from 
phenomenological models to predictions for specific materials. 
 
Place greater theoretical focus on calculating response functions. Electronic structure is 
critical to understanding materials but calculating response functions ties more closely to 
experiment and potential applications. Response functions are intrinsically more difficult 
because they involve correlation functions that are more sensitive to many-body effects, which 
are required for accurate modeling of transport and other processes crucial for IT. 
 
Improve and accelerate in situ synthesis and characterization. Recent advances, 
particularly in x-ray diffraction at high temperatures, pressures, and inert environments could 
allow a more quantitative understanding of the thermodynamics of crystal synthesis. This could 
improve computational models of nucleation and crystal formation, help optimize the synthesis 
of known materials, as well as drive the discovery of new non-equilibrium compounds that are 



only stable under narrow conditions. Computational models of synthesis would be helpful to 
encourage feedback between theory and synthesis and enable calculations of optimal synthetic 
conditions. 
 
Innovations in conceptual theory should be encouraged.  Advances in theories that provide 
new physical insights have created new research directions, leading to the employment of 
computational/data/experimental driven approaches to discovering new materials.  Kitaev spin 
liquids are a critical example, where original work began using abstract theory, followed by first-
principles computational analysis, and subsequent experimental work.  As advances in 
conceptual theory and computational methods occur, they should be integrated into emerging 
large-scale computational materials infrastructure. 
 
Understand interface physics in correlated electron materials.  Interface physics is arguably 
at the core of IT materials, determining the clock-speeds, energy dissipation, and ultimate size 
limits on microprocessors. An emphasis on correlated electron interface physics could lead to 
novel industrial applications of IT materials. 
 
Characterize and model the impacts of disorder on materials properties. There are not 
currently enough characterization tools for disorder effects nor is there sufficient investment in 
the theoretical understanding of disorder.  Correlated materials are exceptionally sensitive to 
defects and imperfections, so this is a critical issue. 
 
Aspirational Perspectives 
 
We are rapidly approaching the physical limits of the current materials on which modern IT is 
built. As the size of these components decreases, quantum mechanical effects begin to 
dominate. One of the most detrimental effects is the increase in energy dissipation in many 
components, including interconnects. The next advances in IT will rely on advances in materials 
optimized for modern needs that are growing in both complexity and scale. The vision for the 
next generation of IT materials should be to enable electronics with near perfect energy 
efficiency and achieve highly complex computations that can model biological processes for 
medical applications, many-body quantum systems, traffic optimization problems, and accurate 
climate models. To realize this vision, new materials for IT must exploit the laws of quantum 
mechanics rather than be limited by them63. Such a paradigm shift will be based on an 
exploitation of the full range of materials properties including magnetic, lattice, and orbital 
degrees of freedom.  For example, giant magnetoresistance64—an effect that depends on the 
magnetic degrees of freedom—is widely used in computer memory (MRAM). Arguably the 
materials with the most promise of multi-functional behavior are those with strongly interacting 
electrons, which can lead to enhanced coupling between different degrees of freedom. However, 
these materials are the least well understood, and have a host of synthetic, characterization, 
and theoretical challenges.    
 
FUNCTIONAL MATERIALS 
Progress in synthetic chemistry and layer-by-layer assembly has enabled the ability to design 
materials that respond in a prescribed way to external constraints, making it feasible to facilitate 
targeted functionalities by tuning their structure and composition65–71.  These functional materials 
have profoundly transformed the technological landscape, pushing back the frontiers of device 
performance and miniaturization.  Figure 5 illustrates some of the many applications, whereby 
functional materials have revolutionized our ability to communicate and navigate, to convert 



and/or store energy, and to process and visualize data; from piezoelectric sensing (Fig. 5a) to 
electrochemical energy storage (Fig. 5b) to optoelectronic display (Fig. 5c-5d).  
 

 
Figure 5. The operation of a wide range of technological devices depends critically on functional 
materials.  For example, a number of microelectronic and telecommunication devices involve (a) 
an accelerometer that converts mechanical constraints into an electrical signal from Ref 72, (b) 
an electrochemical cell whose electron-blocking electrolyte helps convert the flow of ions into 
electricity, from Ref 73 (c) a liquid crystal display that modulates the polarization of light as a 
function of the external voltage, from Ref 74 and (d) light-emitting diodes that are coated with 
phosphor layers modifying the color of the emitted light, from Ref 75.  
 
Successes 
 
Under the MGI, world-class expertise has emerged in solving the inverse design problem of 
identifying novel materials that achieve a targeted functional response76–83.  There are numerous 
examples using MGI-style high-throughput techniques to explore extensive databases of 
compounds in the search for optimal candidates for a given technological application (Table 1), 
with the insights enabled by the MGI approach revealing materials properties unattainable from 
the use of experiment, theory, and computation independently.  In addition to accelerating the 
discovery of functional materials, high-throughput studies provide unique opportunities to 
improve the predictive accuracy of existing computational models84 , and to refine the 
microscopic understanding of materials properties through the close integration of theoretical 
and computational research with experimentation85,86.  There are many successful examples of 



discovering new states of materials through an iterative closed-loop of experimental and 
computational studies3,87,88, an important component of the MGI. 
 

Search target Search space Count Search criteria Search result Ref. 

      

Piezoelectric 
transducers 

Ternaries with half-Heusler 
structure 
 

~1,000 Local and relative stability, 
Band gap, Piezoelectric 
constant, 
Electromechanical coupling 

~80 compounds, including 
KMgP, LiNaS, MgBaSi, 
MgBeGe, NaZnP, NaZnAs, 
KMgSb, NaKO, KMgAs, 
LiNaSe, AgSrAs, CuSrAs 
 

[14] 

Piezoelectric 
transducers 

BaTiO3-based solid solutions ~1,200 Verticality of phase boundary 

(rhombohedral–tetragonal)◇ 

 

(Ba0.5Ca0.5)TiO3–
Ba(Ti0.7Zr0.3)O3

⦿ 
[89] 

Shape memory 
alloys 

Ti0.5Ni0.5–x–y–zCuxFeyPdz 
alloys 

~106 Width of thermal hysteresis 
(experimentally trained 
model using theoretical 
structural, chemical, bonding 
features) 
  

~35 compounds, including 
Ti50Ni46.7Cu0.8Fe2.3Pd0.2

⦿, 

Ti50Ni48.1Cu0.2Fe1.5Pd0.2
⦿, 

Ti50Ni46.5Cu1.1Fe2.2Pd0.2
⦿ 

[90] 

Electroactive 
molecules 

Quinone derivatives with 1–3 
rings 

~1,700 Energy of formation and 
solvation, Redox potential 

~300 molecules [91] 

Fluorescent 
molecules 

Donor–bridge–acceptor 
organics 
(D–B–A) 

~106 Vertical absorption energy 
(S1), 
Singlet–triplet gap (S1–T1), 
Oscillator strength (S1–S0) 
 

~1,000 molecules, 
including 
4 molecules⦿ based on 
carbazole/ phenozazine 
(D), benzene (B), 
pyrimidine/pyridine (A) 
 

[8] 

Photocatalytic 
electrodes 

VO4-based ternaries ~170 Energy of formation, 
Band gap, Band edge, 

UV-vis threshold◇, 

Photocurrent◇ 

~15 compounds, including 
Ag3VO4

⦿, CrVO4
⦿, 

CoV2O6
⦿, 

Cr2V4O13 (2 variants)⦿ 

 

[12] 

Photovoltaic 
absorbers 

Generalized chalcopyrites ~260 Spectroscopic limited 
maximum efficiency 
(aggregate of band-gap and 
absorption-spectrum 
features) 
 

~20 compounds, including 
AgIn5Se8, Cs3AlTe3, 
Cu3TlS2, Cu3TlSe2, Cu7TlS4 
(3 variants) 

[92] 

Transparent 
conductors 

Binary and ternary oxides ~3,000 Band gap, Effective mass, 
Dopability 

~20 compounds, including 
K2Sn2O3, Na2Sn2O3, 
K2Pb2O3 

[93] 

Transparent 
conductors 

Ternaries with half-Heusler 
structure 

~480 Energy of decomposition, 
Band gap 

TiCoSb, TiRhSb, TiIrSb,  
ZrRhSb, ZrIrSb, HfCoSb, 
HfPtSn, TaIrGe⦿, TaIrSn 

  

[94] 

Solid Li electrolytes Li-containing inorganic 
crystals 

12,831 Ionic conductivity, electrical 
conductivity, oxidation 
potential, structural stability, 
material cost,  

21 inorganic crystals [95] 

◇: Determined experimentally. 

⦿: Synthesized and confirmed experimentally. 

 
Challenges and Opportunities 
 
Establish databases centered on interfacial and defect properties. Materials functionalities 
can be dramatically influenced by interfaces and local defects. Databases established during 
MGI 1.0 largely focus on bulk properties of perfect crystals; these efforts need to be expanded 
to interfacial and defect properties, e.g. surface energies of simple oxides and metals, ferroic 
domain wall energies, interfacial energies between differential functional materials, organic-



inorganic hybrids, and 2D heterostructures.  The generation of these databases will require new 
instrumentation and analysis for high-throughput in-operando and in situ characterization.  
Critical to developing interfacial and surface databases will be the use of computational methods 
to bridge length and timescales using data-driven approaches.  Databases of computational 
training data can enable the generation of much faster models, e.g. establishing reaction 
databases from MD simulations, parameterizing classical force-fields with ab initio data, or 
performing mesoscale phase-field simulations at larger lengthscales.   
 
Shorten the time required to reproducibly synthesize and characterize new functional 
materials. A key challenge in knowing whether a proposed material can be made is the lack of 
experimental or computational databases of reactions and kinetics for synthetic approaches. 
Computational reaction discovery and statistical prediction algorithms for complex processes 
are nascent96. Moreover, there are very few existing instrumentation and analysis methods that 
allow high-throughput data acquisition, or in-operando and in situ reproducible synthesis and 
characterization, for the generation of comprehensive static and dynamic property datasets.   
 
Continue to increase the integration of theory, experiment, and data science. There is a 
lack of systematic methods for key descriptor identification (feature selection) and machine 
learning from computed, measured and large-scale facility data, including systematic fashions 
for the reporting of model performance and baselines.  Established approaches from the 
statistics and computer science communities combined with new methods developed specifically 
for materials data issues must be disseminated to the materials community, particularly as 
pertains to materials-science specific feature representations97.  Increased collaboration 
between disciplines will be critical for standardizing data formats relevant to functional materials, 
specifically computed and experimental phase diagrams. 
 
Develop methods to bridge length and time scales in functional materials.  Technologically 
relevant properties of functional materials and devices are often determined by phenomena that 
occur on multiple length and time scales.  For example, the responses of functional materials to 
external mechanical, magnetic, electric and chemical stimuli are controlled by the dynamics of 
the mesoscale architecture of structural, magnetic, electric polarization, charge, and chemical 
domains at different time and length scales.  One needs to link length and time scales over 
orders of magnitude from atomic scale ultrafast responses to the dimension of a device and the 
evolution of its properties over its lifetime. 
 
Aspirational Perspectives 
 
Combining reliable and automated synthesis with high-throughput data acquisition and 
dissemination will enable identification of promising multifunctional materials capable of 
transforming numerous technologies.  Efficient piezoelectric transducers will enable the ability 
to harvest excess mechanical energy from everyday activity and redirect it into portable 
electronics.  New solid lithium electrolytes will induce order of magnitude increases in the 
performance of energy generation and storage technologies, allowing for electronic devices that 
last a week instead of a day.  Novel 2-dimensional materials could allow for the creation new 
microprocessor applications capable of drastically outperforming existing CMOS technologies, 
and transparent conductors will let these new electronics be incorporated into heretofore 
unimagined applications.  The future enabled by developments in high-performance functional 
materials is bright and will impact a vast array of fields common to everyday life. 
 



MATERIALS FOR EFFICIENT SEPARATION PROCESSES 
Purification technologies pervade every aspect of modern life.  Whether separating crude oil into 
useful constituents, purifying natural gas, or desalinating water, the scale of energy consumption 
involved is huge.  Today, approximately 15% of the total energy consumed in the U.S.A. is used 
for industrial separations; this amounts to half of the total energy used by American industry98. 
If energy inefficient separation methods, e.g., distillation, continue to be used, the energy 
required is expected to at least triple by 205099, i.e., about 45% of current global energy use will 
be needed for separation processes by 2050. It is thus critical to discover better materials for 
separation applications.   
 
Successes 
 
Harnessing modern computational and data-driven approaches in the style of the MGI has 
enabled several successes in the context of MOFs, zeolites, and other separation materials (Fig 
6).  Recent work has used more than 800 previous synthesized MOF structures optimized via 
periodic density functional theory (DFT) to derive critical insights pertaining to CO2 adsorption.10 
Successes utilizing these computational approaches are exemplified in numerous industrial 
spin-offs related to separations applications. Some examples include NuMat, which utilizes an 
algorithm developed by Snurr and coworkers9,100 to identify materials useful for oxygen storage, 
air separation, and electronic gas storage; Mosaic Materials101, which is developing low-cost 
synthetic methods and high-efficiency sorption processes based on highly-selective sorbents 
developed by Jeffrey Long’s group; and Quantumscape, founded in 2010, which aims to develop 
solid-state batteries102 aided by high-performance computation at the National Energy Research 
Scientific Computing Center (NERSC) capabilities and has secured a broad range of patents 
involving a variety of solid separators.  The development of porous polymer membranes for the 
elimination of trace chemicals103 in water (Figure 6e) and novel adsorption technologies for the 
capture of pharmaceuticals in water104,105 exemplify promising successes.  These and other 
ventures illustrate that the MGI approach to materials discovery can succeed in industrial 
separations markets. 

 
 

 



Figure 6. Separation materials and Technologies. (a) Large-scale distillation columns for 
separation at an oil refinery98. (b) Relative energy use of Relative energy consumption for 
variation separation technologies, adapted from Ref 98. (c) Illustration of an adsorption-based 
process for the removal of H2S and CO2 from a five-component model of a sour natural gas from 
Ref. 106. (d) Metal organic framework material for separation; image from 107. (e) Porous 
polymer material for separation, taken from Ref. 103.  
 
 
Challenges & Opportunities 
 
Use theoretical approaches to resolve separations of physically similar species.  The most 
challenging separations target products with similar physical properties or similar molecular size 
and shape (e.g., O2 and N2).  These separations are usually performed using molecular sieves 
as membrane materials,108 including zeolites, MOFs, and carbon molecular sieves 
(CMSs).  These molecular sieves typically feature rigid pores that are selectively permeable to 
one species.  The sheer size of the design space of molecular sieves, with thousands of potential 
candidates among zeolites, MOFs, and CMSs, invites the use of rapid computational screening 
combined with experiments to accelerate the process of discovery and refinement of membrane 
materials.  While most successes for porous materials development, guided by computation and 
data-driven approaches, have come from focusing on sorption, challenging separation 
processes requiring selectivity with respect to similar species will require major consideration of 
the oft-ignored diffusive component to separations108.    
 
Characterize the role of defects and interfaces in membrane materials.  For real-world 
applications, the sorbent or membrane material is not a single crystal; defects, grain boundaries, 
and interfaces play pivotal roles in separation performance.  Particularly at low loading, the 
presence of a few defects offering strong adsorption sites for one species can dramatically alter 
adsorption selectivity.  Similarly, blocked pores or non-selective holes can dramatically alter 
membrane performance.  New experiments are needed to fully characterize separation 
materials.  Advances in simulation algorithms, force-fields, and machine learning are required to 
connect deviations from crystallinity to changes in performance. 
 
Understand separations of multicomponent mixtures.  Modern computation and data-driven 
approaches in chemical separations have been primarily applied to the adsorption of binary 
mixtures (e.g., xenon/krypton, carbon dioxide/nitrogen, and ethane/ethylene)109–112 in crystalline 
sorbents (assuming rigid structures for zeolites and MOFs).  However, most separations involve 
additional compounds in smaller mole fractions.  To date, there are few examples applying 
modern computation and data-driven approaches to the separation of multicomponent mixtures.  
It is crucial to study complex mixtures including common contaminants to ensure that 
fundamental research is relevant to industrial needs98. 
 
Design tools to automate and predict the synthesis of membrane materials.  Membrane 
synthesis is a critical challenge in separations technology.  In many cases, the separation 
material itself is not thermodynamically but kinetically stable over the set of operating conditions. 
A complete understanding of the driving factors for the formation of these kinetically controlled 
phases is lacking.  It is striking that among the 300,000 theoretically proposed zeolite structures 
only a few hundred have been experimentally realized106.  Although molecular-level simulations 
of the entire synthetic route are not likely in the near future, ab initio simulations may shed light 
on elementary reaction steps.  Integration of machine-learning approaches with experimental 



databases (including failures to synthesize the desired material) may afford a path to accelerate 
the search for optimal protocols, as has been observed in other fields113.  The development of 
automated synthesis for generating large synthetic databases is crucial to the goal of synthetic 
data mining.   
 
Develop robust computational methods for simulating separation.  The complexity of the 
molecular interactions within membranes requires accurate treatment of Van der Waals forces, 
which are typically absent from standard density functional theory (DFT) approaches.  Moreover, 
the complexity of the phase space to explore in these complex nano-porous and sometimes 
amorphous materials calls for the development of high performance classical force-fields114 as 
they provide computationally cheaper alternatives to DFT.  The challenges in the establishment 
of accurate and transferable force-fields will require a move away from “manual tuning” and 
embrace more data-driven approaches combining machine learning and large databases of DFT 
(with Van der Waals interactions) computations115,116.  Accompanying these computational 
efforts, a database of experimental results is needed, especially from high-resolution structural 
characterization at different temperatures and pressures, to validate DFT as well as force-field 
results. 
 
 
Aspirational Perspectives 
 
The integration of data mining, theory, and synthesis will considerably shorten the time needed 
to develop new separation materials. By addressing the challenges enumerated, candidate 
materials for particular separations will be identified in a fraction of the time currently required, 
leaving researchers to pursue the most efficient syntheses and processing techniques.  In 
academic, industrial, and national laboratories, these new advances and approaches in 
modeling and data analysis will help focus experimental design so that workers in those 
laboratories can minimize the number of costly experiments. This will be particularly impactful 
for the discovery of better materials in water management.  Closed-loop water purification with 
advanced membranes could eliminate depletion of scarce water resources by water-intensive 
industrial processes in many parts of the US and elsewhere in the world, minimize seismic 
consequences from reinjection of spent fracking water, and reduce water requirements in mega 
cities that continue to grow in the developing world. 
 
MATERIALS FOR ENERGY AND CATALYSIS 
 
A reliable supply of energy is critical to sustaining basic human needs and interactions in the 
modern day. Considering current practices with expected increases in population and 
industrialization, global energy demands are projected to increase to 26 TW (about a 40% 
increase from present day) by 2040 with commensurate increases in carbon dioxide emissions. 
With this growing concern regarding global climate change and the diminishing supplies of fossil 
fuels, the need to develop new energy strategies and technologies is critical. New, efficient 
energy materials and catalysts are bound to be at the heart of any successful transition to a 
clean-energy economy. In recent years, the MGI approach has enabled significant research 
progress in the direction of improving efficiency of solar cells, identifying catalysts for converting 
biomass or carbon dioxide to usable fuels and feedstocks, and optimizing the development of 
thermoelectric materials. Nonetheless, such efforts must be continued and intensified to make 
transformative impacts on both the national and global energy portfolio. 
 



Successes 
 
Just as the fields of energy and catalysis place multifaceted demands on materials, ranging from 
radiation tolerance in nuclear reactors to high-capacity Li-ion battery cathodes in energy storage 
platforms, the impact of the MGI on energy and catalysis research has been multifaceted, 
promoting fundamental research and discovery alongside database construction, screening, and 
commercial deployment. One key reason for recent success has been due to the growing use 
of high-throughput ab initio methods and in silico materials design, particularly when strongly 
coupled to experiments and data-centered analysis as promoted through the MGI. This is 
embodied in efforts related to the Materials Project117, which provides open web-based access 
to properties computed using electronic structure methods for thousands of materials and 
chemical compounds. Use of such databases and approaches have been helpful in identifying 
new energy-related materials, many of which would have never been discovered without 
following this MGI-style approach to research.83 Some specific examples include (i) An oxygen 
reduction reaction catalyst Pt3Y for cost-effective fuel cells was discovered, which is 10x more 
active than Pt118 despite using three-fold less Pt for the same activity in nanoparticles119 (Figure 
7); (ii) At least five oxides with band structure and stability suited to provide energy efficient and 
stable water-splitting photocatalysts were discovered120; (iii) Ultrafast ionic conductors in the 
Li10±dMxP2-xX12 family121,122 with liquid-like Li+ conductivity and low materials costs were 
developed; (iv) Nearly a thousand highly promising organic light-emitting diode molecules were 
generated computationally, with some candidates achieving experimentally verified external 
quantum efficiencies as large as 22%8 ; (v) Multiple promising thermoelectrics from the family of 
half-Heusler alloys were synthesized, which can enable more efficient waste heat recovery123.  

 
Many of the examples involve major contributions from industry (Samsung, Toyota, and Bosch 
for examples (iii)-(v), respectively), illustrating success in terms of commercial deployment. In 
addition, combined experimental and theoretical study has greatly improved materials 
understanding. For example, guided by new design paradigms124 to break free of the limitations 
of existing catalysts, focused efforts to understand reaction intermediates and energetics for 
catalytic pathways have led to advances in water-splitting, CO2 reduction, nitrogen reduction, 
and hydrogen peroxide production.125 In the same vein, improved understanding of ion solvation 
and diffusion in battery materials has led to new design paradigms and strategies.32–37,126 Studies 
like these may constitute the foundation of future rational design efforts. 
 



  
Figure 7. Results of ab initio based (a) activity and (b) stability screening for Pt-M alloy oxygen 
reduction catalysts. Images From Ref. 127. 
 
Challenges & Opportunities 
 
Make materials data more discoverable, searchable, accessible and reusable. Developing 
user-friendly application programming interfaces (APIs) for databases, increasing the number 
and extent of databases, particularly for experimental data (e.g., full battery cycling curves at 
different cycling conditions or current-voltage plots for electrocatalysts, with complete 
experimental details embedded), and enabling searches across databases or unifying 
databases will greatly facilitate materials discovery. Databases can be populated by creating 
and/or promoting more data-oriented publications (e.g., like the Nature Publishing Group’s 
Scientific Data and Elsevier’s Data in Brief). Finally, machine learning can be used to generate 
new data missing or outside the domain of present experiments or computations. Concrete 
examples of these efforts are provided by Citrine128, which is aggregating data from multiple 
databases and making them available to integrated search and data mining, and Optimade,129 
which is making a single portal to many databases of computed properties. Both efforts are 
enabled by the APIs that provide convenient access for users. 
 
Focus on understanding disorder, interfaces, defects, and synthetic pathways. 
Most practical energetic and catalytic materials have regions of significant disorder (e.g., grain 
boundaries), non-trivial metastability (e.g., supersaturated dopants), hierarchical structures 
existing on multiple lengthscales, and dynamical processes occurring on multiple timescales. 
Robust methods to quantify microstructure and interfaces, treat metastable non-equilibrium 
structures, and further develop our understanding of complex material structure-processing-
property relationships beyond bulk-phase crystals and simple interfaces are necessary. In 
particular, the application of MGI concepts to synthesis and processing is still in its infancy and 



provides only rudimentary thermodynamic guidance for those trying to make advanced 
materials. Moreover, the formation of defects and their influence on materials properties must 
be investigated to realize practical implementation.  
 
Design new tools to support multiscale modeling.  New tools and understanding that can 
connect fundamental models to devices, including higher-dimensional defects, extreme 
environments, and uncertainty quantification are essential for modeling the complex coupling of 
relevant length and timescales. Accessible databases and automated tools that support rapid 
development of multiscale models from the atomic to system level are needed.  The foundation 
of many existing studies is based on ab initio computation for small system sizes; methods to 
bridge the gap between these computations and realizable macroscopic properties are still 
needed for many applications. 
 
Encourage modeling efforts to be guided by practical requirements.  Potential commercial 
requirements should be fully incorporated earlier in materials development research. Too often 
development focuses on one property, e.g., catalytic activity, without consideration of other 
important constraints, such as cost, toxicity, stability, etc.  Slow degradation processes, e.g., 
deactivation of catalysts, loss of fuel cell efficiency, reduction of battery capacity, and 
embrittlement in nuclear steels, play critical roles in systems performance, but are very 
challenging to study due to the long timescales of these processes. Accelerated testing and 
lifetime modeling, informed by advanced modeling and data analytics, should be developed to 
help overcome these challenges.   
 
Promote the MGI approach in other energy sectors. Many areas of application have not yet 
embraced MGI approaches. For example, the petrochemical industry faces major challenges 
related to the science of fracking, blending fuels, methane conversion, and other areas, where 
MGI approaches could be transformative but are not presently employed. The increased 
availability of database and machine learning along with improved training and education of the 
workforce in these areas suggests that MGI initiatives will be valuable in these mostly unexplored 
application areas.   
 
Develop in operando 4D characterization techniques. The ability to dynamically observe 
every atom in a 3D material has long been a grand challenge of materials science. While 
atomistic modeling tracks every atom, limitations in accuracy and timescale have made many 
processes inaccessible. Experiments have reached atomic-level accuracy but have traditionally 
been ex situ and had many limitations, like providing two-dimensional projections or only 
extracting information for periodic atomic structure.  With improved accuracy and scale in 
simulations, it may soon be possible to integrate experimental results and computational 
understanding to provide a complete picture of the full atomic structure of materials as a function 
of time. 
 
Aspirational Perspectives 
 
Based on MGI principles, ab initio calculations, multiscale modeling, and experimental, atom-
scale in operando 4D characterization will combine to make transformative advances in 
understanding and controlling complex processes in everything from catalytic reactions to solid-
electrolyte interfaces to nuclear fuel-cladding interactions. Based on mechanistic insights, new 
multiscale models will be developed to predict device physics under realistic operating 
conditions. These models and related tools can be disseminated to the broader community, and 



the set of predictions and conditions for various materials will be automatically scraped by 
centralized databases for further exploration by machine-learning and data-mining techniques. 
By addressing the aforementioned challenges, the pace at which new energy materials and 
catalysts are discovered--whether for batteries, photovoltaics, fuel cells, or biomass 
converters—will be greatly accelerated.   
 
MULTICOMPONENT MATERIALS AND ADDITIVE MANUFACTURING 
When considering chemistry and the potential for multiscale hierarchical structures and defects, 
the potential design space for multicomponent materials is vast.  The implementation of new 
materials into advanced engineering systems has exhibited exciting developments (Fig. 8) but 
is still challenged by gaps in knowledge over these lengthscales.  However, by drawing on the 
rapidly expanding menu of advanced materials and the additional promise of emerging synthetic 
approaches (e.g., additive manufacturing), protocols for “location specific” design may soon be 
within reach.  This capability would be transformative for a wide spectrum of 
industries.  Highlighted here are new materials for thermoelectrics, materials for consumer 
electronics, magnetic materials, battery cathode materials, fuel cell membranes, piezoelectrics, 
multiferroics, hydrogen storage materials, shape memory alloys, magnetocalorics and 
lightweight, high temperature structural materials, and high temperature materials for aircraft 
engines. 
 
Successes 
 
Recently, a database with more than 18,000 compounds was assembled from the literature by 
Gaultois et al13, enabling the selection of promising new thermoelectric materials and the 
development of a web-based machine-learning engine130, resulting in the discovery of numerous 
thermoelectric materials that did not exist previously, enabled directly by the data-driven 
methodologies championed by the MGI.  Thermodynamic databases providing the foundation 
for the Calphad approach to materials design have demonstrated the ability to accelerate the 
discovery, development, and introduction of new materials131–133 by dramatically reducing the 
number of experiments required to discover new materials134.  These databases have already 
had strong impact for materials in aircraft engines and other advanced aerospace vehicles132–

135, including a steel alloy for aircraft landing gear, several polycrystalline and single nickel alloys 
for power generation and aircraft engine gas turbine components134–137, and a new aluminum 
alloy for applications in consumer electronics138.  Databases populated by high-throughput DFT 
calculations have been assembled for a wide variety of multicrystalline properties, including the 
Materials Project (LBL/Berkeley), AFLOW (Duke), and NOMAD (EU Center of Excellence), 
among others14,76,139–142.  Additive manufacturing has impacted the 3D printing of soft 
materials143,144, specifically for consumer health applications145–147. This technology has been 
successfully industrialized with Kodak, Nike, and Johnson & Johnson all announcing 
partnerships with the Continuous Liquid Interface Production (CLIP) 3D printing company 
Carbon148.  Additionally, powerful new tools including Dream3D 149G, the Materials Commons 
data sharing platform150, the NIST interatomic potential repository151, and the Citrine Informatics 
machine learning128 platform have been developed that promise to reshape the current methods 
of materials discovery. 
 
Challenges & Opportunities 
 
Cultivate strategies for tailoring three-dimensional material architectures. The control of 
3D material architecture has the potential to generate new classes of materials.  Careful tailoring 



of the geometrical placement of material during synthesis can produce ultra-light weight lattices 
or acoustic and mechanical metamaterials that have properties not achievable via conventional 
bulk materials processing routes26,152,153  A key enabling technology is additive manufacturing 
(AM), by which 3D  microstructures are precisely built to induces unique properties.  New 
platforms for 3D printing over the past decade, including powder bed processes such as Electron 
Beam Melting, Direct Metal Laser Sintering, and Selective Laser Sintering, powder feed 
processes such as Laser Engineered Net Shaping, wire feed deposition processes, fused 
deposition modeling, and binder printing154–170. The promise of additive manufacturing is 
tempered by the strongly empirical approaches to tuning deposition parameters and the 
extraordinarily small menu of materials amenable to 3D printing.  There is a dire need for 
predictive models that will guide the development of processing parameters and enable control 
of structure and defects in 3D. This is true across materials platforms, ranging from metals, to 
ceramics, to polymers. 
 

 
Figure 8. Examples of multicomponent materials and additive manufacturing: (a,b) A shape 
memory alloy with the shape depicted in (a) that after stretched to the shape depicted in (b) 
returns to its original shape; Images from Ref. 171.(c) Gamma TiAl turbine blade used in various 
Boeing models, developed using recently-assembled materials databases from Ref 134.  d) 
Nickel-based materials currently in development for use in future more reliable and energy-
efficient aircraft engines: microscale view (left) and simulation (right) from Ref 135. 
 
Explore new strategies to create hierarchical 3D structures with memory. Recent efforts 
have demonstrated that it is possible to design and produce through additive manufacturing 
intricate network-based structures which retain memory of their initial state, and that can deliver 
highly unusual, engineered mechanical responses, including allosteric or auxetic behavior172,173. 
Other examples have shown that it is possible to print 2D structures that subsequently fold along 
specific pathways to form elaborate three-dimensional objects28. Such efforts are in their infancy. 
A focused effort is needed, aimed at defining the range of what is possible, in terms of 
engineering information into a material from the moment it is created and assembled, and that 
encompasses computational materials design, structure engineering design, and synthesis of 
materials conceived to deliver specific behaviors upon printing or assembly. 
 



Distribute improved techniques for data reconstruction and analysis. The rate-limiting step 
is no longer acquisition of materials information but data reconstruction and analysis.  This data 
overload is apparent for additive manufacturing, where layer-by-layer thermal data is now 
collected to track potential defect formation168.  An interesting early effort on the use of computer 
vision174  to autonomously classify and analyze microstructural data and identify “microstructural 
signals” suggests new pathways to guide development of new materials and optimize their 
processing, further highlighting the potential impact of advanced data tools.  Terabyte-scale 
datasets to be captured in 3D and 4D, collected from an ever-expanding array of tomography 
approaches, must be effectively and efficiently collected, integrated, analyzed and shared (Fig. 
9).  When multimodal information is collected within across different platforms, there is an added 
complexity of merging data from different detectors with different distortions and resolution. 
Significant development is needed to automate disparate materials signals for greater insight 
into materials structure and behavior. 
 

 
Figure 9. Example of computer-aided visualization and detection. (a) A visual dictionary used to 
classify microstructural data, (b) an example of a complex microstructural input to the 
computational visual classifier, and (c) the output of the classifier, correctly classifying the input 
as a ductile iron micrograph with prominent spheroidal graphite inclusions. Adapted from Ref. 
174 
 
Continue efforts for predicting behavior related to microstructure, interfaces, and the 
motion of dislocations. Material properties including strength, work hardening rate, ductility, 
fatigue life, fracture toughness and creep can all be drastically affected by microstructure and 
the presence of dislocations. Discrete dislocation dynamics (DDD) simulations are becoming 
more common but remain limited. While there have been insights gained in the area of small-
scale plasticity and thin films13,76,130–136,175–178, the challenge for the DDD simulations is to have 
the same impact on bulk plasticity. In the context of polymeric materials, models and 
characterization methods must be developed to understand welding and diffusion of polymeric 
molecules across interfaces, leading to entanglements and strengthening of complex three-
dimensional structures as they are produced179. 



 
Automate synthesis and characterization for multicomponent materials. Recent 
approaches to use robotic arms and “slack chain” concepts to rapidly test large arrays of tensile 
samples are in development180.  With regard to fatigue, resonating samples in the kHz frequency 
range can reduce testing time from months to hours181,182.  For combinatorial synthesis, there 
have been efforts directed at fabricating materials libraries, mostly for functional materials, 
including coatings, catalysts, and magnetic materials 183–186.   Materials discovery through 
combinatorial synthesis could benefit from the more standardized, low cost, high efficiency 
platforms and the development of “community libraries”.  Optical and electronic microscopy 
could benefit from automated, high-throughput approaches.   While high-throughput microscopy 
instruments are well developed for the biology community, with multiple fully automated confocal 
systems available187, there is limited use or availability of similar instruments for the materials 
community.  A robotic serial sectioning system188 has recently become available for 3D 
tomography, but few datasets have yet emerged.   
 
Focus on the prediction of rare events in multicomponent materials. Many properties of 
materials are limited by “rare features” related to microstructure or “extrinsic” defects that are 
either unknown or unintended.  Examples include fatigue life of nickel-based turbine disk alloys, 
where rare combinations of grain size, orientation and the presence of annealing twins cause 
early strain localization and fatigue.  In the context of polymeric materials for lithographic 
applications, defects in directed self-assembly must be reduced to levels on the order of 1 defect 
per 100 cm2.189 In additive manufacturing, an occasional disturbance in the laser or electron 
beam operating conditions can result in local “lack of fusion” defects.   Unintended phases, 
impurities or inclusions can be introduced along material processing routes for nearly every class 
of material.  To predict materials properties at a prescribed degree of confidence, these defects 
must be detected and their statistical distribution quantified.  While new suites of non-destructive 
evaluation (NDE) approaches are needed, there is a large gap between the NDE community 
and the materials community.  Statistical approaches to predicting materials properties and their 
variability have also suffered from lack of cross-pollination of these communities.  The 
methodologies for integrating multiple signals, specifically acoustic, image and X-ray signals, for 
detection of defects and for input to life prediction models remains to be developed. 
 
Aspirational Perspectives 
 
The discovery of new materials with unique properties and functionalities has revolutionized 
entire industries (lighting, aerospace, communications, automotive), continuing the centuries-
long trend for materials to fundamentally transform society (i.e., the bronze, iron and silicon 
ages). At this moment, materials science, long challenged by the complexity of engineering 
materials, is poised to be transformed by the rapid expansion of computational power, the ability 
to generate, archive and federate large volumes of materials information, and the emergence of 
informatics tools.  Leveraging these developments within interdisciplinary research and 
development efforts will provide entirely new suites of materials that will continue the 
transformation of industry and society. More broadly, by fully integrating computation, 
experiment, and theory, critical breakthroughs may be afforded.  3D engineering objects may be 
manufactured on demand, with tailored and predictable properties.  Material behaviors emerging 
from a hierarchy of length and timescales may be predicted based on their location-specific 
properties, without the use of empiricism.  Autonomous experiments and simulation platforms 
may generate robust new data sets for analysis.  Multimodal materials signals may be collected 
and used for the control of synthesis, functional properties, and the assessment of material 



health.  Rare events in materials may be detected, predicted, and mitigated in order to guarantee 
material performance. 
 
UNIFYING THEMES FOR MATERIALS DESIGN 
While each application area or materials focus possesses unique challenges, there are needs 
and objectives that pervade such boundaries, resulting in overarching themes and solutions 
shared amongst all sub-disciplines. Here, we emphasize the most pressing needs that emerged 
during the workshop. 
 
Continue the integration of experiment, theory, and simulation. Despite many successful 
examples of the MGI approach, experiment, theory, and simulation must become even more 
tightly coupled to truly accelerate materials discovery. There should be continued emphasis to 
fully realize collaborations with true theoretical/experimental feedback, rather than separate and, 
at best, simultaneous experimental/theoretical study. Theoretical and computational techniques 
or expertise must be effectively utilized by experimentalists to guide their studies with data-
driven, computation-enabled search procedures, and experimental data is needed to improve 
computational models.  Additionally, collaborations, particularly those that encompass multiple 
institutions, should leverage modern cyberinfrastructure for more integrated and informed 
collaboration. 
 
Devote resources to train students in both theory and experiment. Although MGI successes 
have resulted in greater collaboration, there are still different jargon, working cultures, and 
expectations between experimentalist and computationally focused groups. While specialization 
will still be necessary, supplemental funding mechanisms for students to spend time in other 
groups or in companies to get exposure and learn the language of the experiment/theory 
complement would foster communication and raise awareness of limitations and priorities during 
collaboration.  An IGERT-like environment might foster such broad education. 
 
Develop tools to automate synthesis and characterization. Across sub-disciplines, the need 
for automated synthesis and characterization techniques emerged time and again. Materials 
development could be accelerated greatly with the creation of high-throughput, preferably 
autonomous, synthetic and characterization techniques. This would provide a platform for 
synthetic optimization, the ability to rapidly test and inform theoretical predictions, and would 
work synergistically with machine-learning efforts. This could be particularly impactful to 
construct a closed-loop that enhances synthetic discovery, using generated data to improve 
computational synthesis models and then using improved models to propose new syntheses.  
Numerous examples have yielded models for future development: medicinal industries have 
witnessed outstanding success in the automation of synthetic chemistry190–192.  Advances in flow 
chemistry have demonstrated potential for the automation of characterization techniques193.  
Nanomaterials have benefited greatly from automated synthesis and characterization 
techniques.194,195  Recent work has combined deep learning for screening inorganic and metal 
oxide synthesis parameters196,197.  Future advances will likely rely on existing databases for 
known organic reactions198, and an evolution away from the “trial-and-error” paradigm199.  A 
recent report highlights the proposed Materials Acceleration Platform (MAP) which aims to 
automate synthesis and characterization protocols via the use of modular robotics, machine 
learning, and inverse design200.  Companies such as the Emerald Cloud Laboratory201 and 
Transcriptic202, among a number of others203, represent promising efforts towards the 
development of cloud-based synthesis and characterization laboratories. 

    



Create user facilities for high-throughput characterization. High-throughput experiments to 
synthesize, validate, and optimize predicted compounds have been a bottleneck for the 
realization of new compounds and their integration into devices and complex systems. For a 
single laboratory, the development of high-throughput techniques can be extremely costly and 
time-consuming.  The need for high-throughput user facilities, such as those present at some 
national laboratories, is critical to the widespread generation and dissemination of data in a high-
throughput manner. This mechanism requires a shift in philosophy to value the understanding 
of the entire materials genome for a given material in addition to perceived high-impact studies 
that also require facility services. 
 
Create opportunities for enhancing understanding of data-driven research.  The amount 
of data in materials science is typically significantly less than those datasets for which many 
machine-learning techniques were developed.  Because datasets used by tech companies 
typically comprise greater than 105 points, the types of systems in materials science amenable 
to data science is severely limited without development of high-throughput experimental and 
synthetic facilities. Moreover, better education and training is needed for materials scientists to 
appreciate the magnitude of data required to efficiently apply the techniques of data-driven 
research.  Such training should include best practices for data acquisition, curation, and sharing, 
and competency in tools that facilitate them. At the graduate level and above, summer schools 
or programs similar to the Institute for Pure and Applied Mathematics could facilitate information 
exchange, collaboration, and creative problem solving.  On-line courses like the NSF-supported 
nanoHUB,204 which has developed 27 courses and served approximately 75,000 learners from 
1100 universities and 167 companies, should continue to be supported and disseminated.  NSF-
sponsored NSF Research Traineeship (NRT) programs are also enhancing workforce 
development by enabling programs like Data-Enabled Discovery and Design of Energy Materials 
(D3EM) at Texas A&M.  Internships and exchange programs among universities, national 
laboratories, and industry will accelerate the information flow and the alignment of activities to 
increase the impact of science on society.  These opportunities can range from full-time 2-year 
masters programs to formal online MOOCS (e.g., Georgia Tech’s Online Master of Science in 
Analytics) to informal Corsera / edX courses205.  Project-based active learning opportunities for 
undergraduates in the Informatics Skunkworks at the University of Wisconsin206, the innovative 
courses program FLAMEL at Georgia Institute of Technology207, and the new Department of 
Materials Design and Innovation at University of Buffalo208 are all recent initiatives that largely 
owe their existence to the MGI. We should extend such training efforts including those outside 
traditional four-year colleges and graduate schools, e.g., community college students and high-
school students, to support either their eventual enrollment in more traditional materials 
programs or their placement in high-quality jobs.  
 
Distribute tools for automating, collecting, curating, and sharing data. A concerted effort 
must be made to design tools for materials scientists that automate the collection, curation, and 
distribution of datasets.  Similarly, tools for automating data extraction from the literature are 
critical209. Some exemplary efforts in this direction include the CHIMAD Polymer Property 
Predictor Database210 and Citrine’s Lolo211. Tools should be capable of interfacing with existing 
databases and incorporate tutorials and workshops to raise awareness of the capabilities of 
these methods and train users in best practices. 
 
Standardize data and metadata formats. There are no standardized formats for reporting 
experimental or computational data in the vast majority of journals. This inhibits data scraping 
and text mining tools to populate databases from existing literature data. Mandating formats for 



data and metadata212 would facilitate data aggregation from the literature, thereby permitting 
application of data-driven approaches, as well as enhance reproducibility of experiments and 
simulations. The responsibility to provide metadata is currently on the individual and typically 
ignored; pressure provided by funding agencies, journals, reviewers, and database developers 
should be applied, where appropriate, to institute necessary standards. 

 
Incentivize and encourage the publication and sharing of null results. Most journals, and 
by extension most researchers, are primarily concerned with positive results. However, null 
results are critical to understanding material properties,113 yet they are infrequently 
disseminated. For both materials and synthetic optimization, null results define part of the 
materials genome, and significant resources might be used to identify synthetic conditions or 
compositions that are already known (by few) to be poor. There should be efforts and outlets to 
publish such null results, thus making so-called ‘’dark data’’ public.  Data-oriented publications 
are beginning to address this issue, but incentives are needed for the academic community to 
obtain and share data between groups, ideally in a manner corresponding to the FAIR data 
guidelines213.  A recent MGI report provides a promising outline for future directions in data 
sharing practices214. 
 
Broaden database focus beyond bulk material properties. While databases regarding 
common bulk properties are essential, there are a number of other properties that are also crucial 
for materials design. Among these are interfacial and surface properties, which are inadequately 
characterized and poorly understood. Additionally, databases concerning functional properties 
are vital to the discovery of new materials, but equally important are databases of those material 
properties essential to industrial adaptations, which are often ignored in many research efforts, 
such as material cost, toxicity, solubility, and stability. 
 
Increase interaction with industrial partners. There should be support for direct interaction 
between Ph.D. students and industrial partners.  Industry representatives at the MGI workshop 
identified three key traits that are highly desirable in prospective employees: (1) Can the 
candidate work independently and does she have the important technical skills? (2) Can the 
candidate work effectively across theoretical, experimental, and data-centric boundaries? (3) 
Can the candidate adapt rapidly to new techniques required by a fast-changing research 
landscape?  We should introduce realistic industrial needs into integrated CET training through 
encouraging collaboration with companies, using industry relevant examples, including system 
relevant considerations outside of basic material properties, and engaging with documents 
outside the academic literature, e.g. patents. Connections to the interest of industry can be 
improved. Certain sectors of US industry have historically had a strong presence in fundamental 
research; notable are Bell labs, IBM, Kodak, and Xerox. The needs of these industry sectors are 
not well known to the academic community, pushing industry to look beyond the US for expertise. 
It is thus of broad economic importance to make better connections to industry, including the 
participation of industry scientists in academic conferences and workshops, as well as longer 
term collaborations involving student exchanges, internships, and multi-PI grant structures that 
include industry. 
 
 
CONCLUSIONS 
The initial phase of the MGI widely impacted scientific and engineering research in a variety of 
vital industrial sectors, including medicine, energy, catalysis, transportation, and computing, and 
it is now time to explore new frontiers for materials design.  The challenges and opportunities 



outlined herein describe a range of critical material needs that can be addressed by further 
investment in the MGI principles.  Through the continuing application of data-driven, integrated 
efforts in experiment, theory, and computation, the underlying structure-function relationships 
intrinsic to the materials genome can be revealed.  By applying these insights to generate 
extraordinary advances capable of sparking revolutionary new technologies, the Materials 
Genome Initiative will seed a new generation of advanced materials and materials innovators 
capable of transformative nationwide impact. 
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