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Wireless Power Transfer: Principles and Prospects 



NYU WIRELESS: Mission and Expertise

Leading academic center in wireless communications

25 faculty, post-docs, research engineers

60 students

15 industrial affiliates

Largest research center in NYU Tandon

Our mission:

Create future leaders

Fundamental research: Lead the way to the next generations

Solve problems for industry

Current in force funding

Over $10 Million/annually  from  NSF,  NIH, and Corporate sponsors
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NYU WIRELESS: Technologies and students that impact the real world!

We focus on wireless technologies: “end-to-end”
oHow wireless interacts with upper layer protocols and applications
oHow wireless works in the real world!

NYU WIRELESS tools are widely-used in industry and academia
oNYUSIM Statistical Channel Model
oChannel Sounders, Propagation Data,  software, chips
oNs3 network simulator
oWidespread industry and academic use – over 80,000 NYUSIM users

NYU WIRELESS has leading roles in two largest 
nationwide testbed programs

oNSF PAWR: COSMOS:  Large-scale city wide testbed in NYC
oSRC/DARPA:  JUMP:  Multi-university center on THz

Theory to Practice



NYU WIRELESS Research Thrusts
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NYU WIRELESS INDUSTRIAL AFFILIATES
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Tom Marzetta – An Introduction
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• Born 1951, Washington, D.C.

• Licensed radio amateur, WN(A)3BQK, 1964

• Gonzaga College High School, Washington, D.C., 1964-1968

• Working career
• Petroleum exploration (Schlumberger-Doll Research, 1978-1987)

• Defense (Nichols Research, 1987-1995)

• Telecommunications (Bell Labs [AT&T, Lucent Technologies, Alcatel-Lucent, Nokia], 1995-2017)

• NYU, 2017-present



•Why go after it? Not because it’s easy, but because it’s hard!

•Incalculable potential pay-offs; what if we could wirelessly power:

• drones?

• operating room instruments and devices?

• factory robots?

• We’re still far from realizing this promise!

• There is no known physical principle standing in the way

Wireless Power Transfer



• Transmitted power 

• Power density

• Received power

• Transfer efficiency

•

Classical Beamforming Isn’t the Answer
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Circuit Theory of Wireless Power Transfer

M.T. Ivrlac and J.A. Nossek, “Toward a circuit theory of communication”, IEEE Trans. Circuits and 

Systems, July 2010

M.N. Abdallah, T.K. Sarkar, M. Salazar-Palma, “Maximum power transfer versus efficiency”, IEEE 

Antennas and Propagation Society International Symposium, 2016

T.L. Marzetta, “Super-directive antenna arrays: Fundamentals and new perspectives”, Proc. 53nd

Asilomar Conference on Signals, Systems, and Computers, 2019



• Ported device

• Linear time-invariant system of n ported devices completely described 

by         complex-valued impedance matrix 

• reciprocity                                                    (unconjugated transpose)

• real power dissipation is non-negative

Any System of n Transmit/Receive Antennas is an n-Port Network
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• Classical solution: optimize the load impedance

How to Draw Maximum Power From a Voltage Source
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• Classical solution: optimize the load impedance

• Alternative solution technique: optimize the load current – a useful trick!

Only 50% efficient!

 
( ) ( )

2
s L

2 2
s L s L

2
s

s

*
L L L L s L s

L 4

Re ,
v z

z z z z

v

z

P i v z z z z

P



   + + +



   = = → = − =

=

sv

sz

Lz
+

−

Li
+

−
Lv



Power Transfer Between Two Arrays

• Transmit power

• Receive power
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Strategies for Choosing Transmit & Receive Currents

• Power transfer efficiency

• Greedy strategy (non-cooperative)
• given the transmit current, choose receive current to maximize receive power:

• choose transmit current to maximize resulting efficiency

• efficiency never exceeds 50%

• Optimum strategy: jointly choose transmit and receiver currents to maximize efficiency
• optimized transfer efficiency is the same in both directions
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Special Case: Mx1

• Optimized efficiency

• 100% efficient if                                               (perfectly coupled) 

• Greedy (non-cooperative) strategy
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Super-Directivity

S.A. Schelkunoff, “A mathematical theory of linear arrays”, Bell Systems Technical Journal, 1943

G.J. Foschini and M.J. Gans, “On limits of wireless communication in a fading environment when 

using multiple antennas”, Bell Systems Technical Memorandum, Sept. 1995

“For example, consider a transmitting horn antenna, with an aperture about 10 wavelengths on 

a side, located in outer space roughly aimed at the earth, With a one wavelength diameter 

supergain antenna on the earth it is possible to receive virtually all of the power radiated by the 

horn antenna.”



Super-Directivity: Deliberately Create and Exploit Mutual Coupling;

Distinct From Super-Resolution

• Super-resolution

• Pretends that propagating field is spatially bandlimited (it really isn’t – evanescent waves!)

• A bandlimited field is analytic: measured field can, in theory, be extrapolated to create a 

larger, higher-resolution, array (prolate spheroidal wave functions)

• Applicable to synthetic apertures

• Super-directivity

• Relies on mutual coupling among antennas

• Can’t be used with synthetic apertures



• Impedance matrix

• Object is to maximize open-circuit receiver voltage, subject to transmit power constraint

Example: End-Fire Linear Array
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• If we ignore mutual coupling (maximum-ratio; time-reversal beamforming)

• Super-directive beam-forming

• Super-directivity increases beamforming gain from 
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M=8: Array Gain Relative to Single-Antenna Gain



Broad-Side Linear Array (Receiver Normal to Array Axis): No 

Super-Directivity; Mutual Coupling Only Makes Things Worse!

Array-Gain/M



• Limit current distribution, d→0:

• note: a short dipole is equivalent to a two-element super-directive array!

• Mathematical interpretation: find a sub-space of the real part of the mutual impedance 

matrix, having small eigenvalues, that contains at least a portion of the propagation vector
• these modes can be driven by large currents

•Plane-wave expansion of field
• utilize closely-spaced antennas to create super-wavenumber (           ) plane-waves in 

direction of receiver                                       , so transverse wavenumbers are imaginary

• transversely, the super-wavenumber plane-waves are evanescent!

• they decay exponentially and carry only reactive power transversely

• explains why broad-side operation doesn’t support super-directivity

How to Explain Super-Directivity?
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•Linear array, end-fire operation, range 5 wavelengths

•Account for antenna internal losses:

ohmic-resistance/radiation-resistance 

Super-Directive Power Transfer: 10-Antenna Array
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• As antennas get close together, impedance matrix approaches singularity

• Numerical values of antenna currents become enormous

• real radiated power under control

• But: reactive power is huge

• internal ohmic losses

• huge reactive field in the near-field

•Extreme sensitivity

Traditional Problems With Super-Directivity



• Super-conducting antennas

• Meta-materials

• New MIMO configurations

• Highly reverberant propagation environment

• interior isolated from exterior: no spectrum-licensing issues!

• minimizes near-far effects

• creates propagation degrees-of-freedom

• in principle, a single low-gain antenna can transmit arbitrary power to a single low-gain 

receive antenna with 100% efficiency

• ???

How Can We Make Super-Directivity Practical?



A Big Surprise in 2008: All the Mathematics Had Been in Place For 100 

Years, but People Still Didn’t Understand its Implications!

A. Karalis, J.D. Joannopoulos, M Soljačić, “Efficient wireless non-radiative mid-range energy transfer”, Annals of Physics, Jan 2008

• 10 MHz (30-meter wavelength)

• 60 Watts, 40% efficiency

• high Q’s ~ 1000 compensate for low coupling coefficient,         .002 =
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New Graduate Course:

A Linear System Approach to Wave Propagation



Traditional Physicist’s Approach to Electromagnetic Theory
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• Electric and magnetic fields

• Distributed electric current source

• Maxwell’s equations

• Potentials

• Uncoupled wave equations

• solve via method of separation of variables

• spherical coordinates
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Linear System Approach to Electromagnetic Theory
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• Maxwell’s equations

• A linear space/time-invariant system

• Space/time Fourier transforms

• System of linear equations
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• Closed-form solution for electric & magnetic fields

• Given , we have  a two-pole system in

• we extract the residues of the two poles

• fundamental result: in the exterior of the source distribution, the electric and magnetic fields can 

be represented exactly as superpositions of plane-waves, 
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• The potential impact of wireless power transfer is enormous

• We need a lot of bold, risky research to make it happen

• Communication theorists and signal processing researchers need to acquire a 

working knowledge of electromagnetic theory: there is a better way to learn the 

subject than the physicist’s way

• Having a complete mathematical description of a phenomenon does not necessarily

mean that we really understand the phenomenon: there is often wide scope for

discovery and invention

Conclusions

Simplification of modes of proof is not merely an indication of advance in our knowledge of a 

subject, but is also the surest guarantee of readiness for further progress.

W. Thomson [1st Baron Kelvin] and P. G. Tait, Elements of Natural Philosophy, 1873


