Devloping and deploying scalable,
efficient, and accurate personalized flow
simulations

Amanda Randles
Biomedical Engineering
Duke University



Why should you care
about personalized
flow models?

Development and Applications of Massively Parallel Models of Human Hemodynamics

RANDLESLAB, DUKE UNIVERSITY



. Me in one slide .
1

Masters @ Randles Lab opens
C“) Computer Science ‘. First Randles Lab paper
Bachelors: PhD 'y NSF
Physics Applied Physics ® cAREER
Computer Science NIH
NIH UO1
DP5

’ Elizabeth is born
Got married O

®

Aubrey and James
are born

Development and Applications of Massively Parallel Models of Human Hemodynamics RANDLESLAB, DUKE UNIVERSITY



PATIENT-SPECIFIC COMPUTATIONAL MODELS
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Patient-derived
imaging data

Patient-specific
3D geometries

Feedback

Visualization,
Interaction, and
Discovery
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. PATIENT-SPECIFIC COMPUTATIONAL MODELS .

Mechanistic Massively Parallel Computing
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. OUTLINE .

« Impact of increase in compute capabilities
- Method overview

« Application vignettes:
« Vascular diseases
* Fluid structure interaction
« Ventilator splitting model
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. IMPACT OF INCREASE COMPUTE POWER .

2005
1 processor

2005-2008

« Worked at IBM on the Blue
Gene supercomputer

« 65k processors

2009 and 2010

« Juelich Extreme Scaling
Workshops

« ~300k processors

2015
« Worked at LLNL
« ~1.6 million processors

2021
« Aurora Early Science
« Exascale
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FULL ARTERIAL NETWORK
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. COMPUTER SCIENCE CHALLENGES .

computing
algorithms

learning
accelerators

d ata |/O analysis
supercomputers

visualization

doma|n machine. .
cloua decomposition

., storage vyjrtual
reality science
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Computational Fluid Dynamics | . i/ -

« Solves the (weakly compressible) Navier-
Stokes equations

« Minimal communication between lattice
points during update

« Macroscopic quantities computed at lattice
points

« Straight forward treatment of complex
geometry
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How do we make these models
tractable?
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. DOMAIN DECOMPOSITON .
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IRREGULAR DOMAIN DECOMPOSITION
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. MINIMIZING MEMORY FOOTPRINT .

Full body 20 micron 9 micron ‘
arterial

Data Grid 68909 x 25107 x 188584 |

Data memory 90.2 PB ) (i‘

Fluid nodes 509 billion /’ "-"‘, »
Fluid memory 140.7 TB

SN
)
— —>

Fluid Fraction 0.15% h

-
« Sequoia Blue Gene/Q total system memory: },, % |

\

1.6 PB 5
- Indirect addressing is mandatory, and only
the first step ’

« Initialization and load balance now
significantly more challenging

Development and Applications of Massively Parallel Models of Human Hemodynamics RANDLESLAB, DUKE UNIVERSITY



. MEMORY LAYOUT SCHEMES .

A system of 4 lattice points to be addressed in memory:

Layout

AoS

SoA

CSoA (stride 2)
Bundling (stride 2)

Herschlag et al. IPDPS 2018
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Efficient Use of Large-Scale Supercomputers
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APPLICATIONS OF MASSIVELY PARALLEL
FLUID MODELS
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. Cardiovascular Disease .

CADs share highest burden of heart diseases with 370,000 death per year
in the United States.

Personalized simulations can provide lesion-specific data to determine the
functional severity of a stenosis and guide therapeutic action.

50% of men and 64% of
women who die of
cardiovascular disease
have no previously
detected symptoms
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Diagnostics
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. Determining lesion ischema: to stent or not? .

1. COURAGE NEJM 2007
FER = Distal Coronary Pressure (Pd) 2. DEFER Study JACC 2007
~ Proximal Coronary Pressure (Pa) 3. FAME NEJM 2009
(During Maximum Hyperemia) 4. FAME I NEJM 2012
5. FAME III AH]J 2015
6. Clinical outcomes FAME 11, Circ. 2019
A e .
Pa _— > Pq
Hyperemia: Large gradient
B .
=S
/ + Q/’:’?”i”if@_ =
Pressure | p
. . . . ’ d
guide-wire Hyperemic drug Invasive FFR = B

a

FFR is the current gold standard for the assessment of coronary
artery disease
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. Deriving flow from angiography data .

Reconstruction

Algorithm 6

Patient—speciﬁc 3D geometries

Modeling based
on clinical data

-\( ’ \ Derive
—M\ hemodynamic
’ \ risk factors

\ ———

Massively parallel CFD simulations

3D Physiological flow maps

Significant physiology can be resolved using CA applied to
CFD, which can help determine intracoronary hemodynamics
more accurately and augment FFR

Vardhan et al. Nature Scientific Reports 2019
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. Importance of including side branches .

All vessels, A

Main vessels, B ]
LAD 3, C w
LAD 2 D
=—LAD 2D
==LAD1, E

g

(Pa)

TAESS

Maximum Diameter

0 — 1
0 0.5 1 1.5 2
Length (cm)

Capturing the full arterial tree including
side branches is critical to accurately
assessing flow characteristics.

Vardhan et al. Nature Scientific Reports 2019
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. Capturing complex lesions .

« Complex lesions found in more than 20% of patients

« High risk of developing secondary adverse cardiac events

Commonly excluded from most non-invasive clinical trials

Distal MV

Bifurcation Lesion

Determining hemodynamic precarity in complex lesions can help
understand disease progression and guide future treatment
decisions

Vardhan et al. Nat. Sci. Rep.
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Matching CA-CFD to in vivo data

Case Vessel Clinical Resting Pressure CFD Resting Pressure  Percent Error
Case 1 LAD 0.93 0.94 0.6%
Case 2 RCA 0.97 0.98 1.0%
Case 3 LCx 0.96 0.97 1.0%
Case 4 RCA 0.88 0.88 0.0%
Case 5 LAD 0.95 0.95 0.0%
Case 6 RCA 0.91 0.90 0.7%
Case 7 Left Main 0.96 0.99 3.1%
Case 8 LCx 1 0.98 2.0%
Case 9 RCA 0.98 0.92 6.0%
Case 10 LAD 0.82 0.72 12.2%
Case 11 LAD 0.92 0.95 3.3%
Case 12 RCA 0.98 0.93 5.1%
Case 13 LAD 0.93 0.97 4.3%
Case 14 RCA 1 0.95 5.0%

3.16%

Invasive resting gradient and CA-CFD resting gradient are in close
agreement with each other

Vardhan et al. Nature Scientific Reports 2021

Development and Applications of Massively Parallel Models of Human Hemodynamics RANDLESLAB, DUKE UNIVERSITY



Mixed order models: VA-ECMO
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. VA-ECMO - mechanical support system .

* External heart and/or lungs for patients with
cardiopulmonary failure
* Process
1. Drain deoxygenated blood from veins
2. Pump

3. Oxygenate
4. Infuse blood through insertion cannula in

femoral artery, axillary artery, or aorta

Oxygenator <
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. Importance of the mixing zone .

« ~15% patients develop neurological
complications

« Cerebral hypoxia

 Differential hypoxia - well
oxygenated VA-ECMO flow
meets poorly oxygenated
cardiac output

« Mixing zone — region of mixing
in the aorta

Important to determine how physician tunable parameters and
cannulation location influence flow to the brain and location of
mixing zone
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Building 1D-3D coupled models
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Feiger et al. J Biomech 2020
Feiger et al. Comp in Bio and Med. 2020
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Building 1D-3D coupled models

@
o

« Coupled models provide accurate
3D hemodynamics and capture VA-

»
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Feiger et al. J Biomech 2020
Feiger et al. Comp in Bio and Med. 2020
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Treatment Planning
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. Treatment planning .

Results from CFD simulations can guide
clinical treatment.
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. Simulations can capture local effects on ABI .

1.2 T
[ JEqualized
1l Ml Original
60%
[2x 60%
0.8+ Ms0%
5 _ _
< 0.6 B - —
0.4
0.2
O i = S
ABIL1 ABILQ ABIm ABIR2

Density

| | | | |
1.000 1.002 1.005 1.008 1.010

Gounley et al. Journal of Biomechanics 2019
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. HarVis: XR interaction .

« Using devices like the Occulus Rift, HTC Vive, and
zSpace to investigate different modes of interaction

= G ;65

2D

Traditional zSpace HTC Vive
Desktop or Laptop

Vardhan et al. MICCAI 2019
Shi et al. Journal of Computational Science 2020
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. Assessing user interaction .

« Full immersive devices can provide reduced error for
completing defined tasks like conduit placement or virtual
revascularization

« Fully immersive devices prove most effective for PCI
planning

« Access to shear stress maps reduces differences in
participant accuracy across devices

Place a stent (2 dots) to fix the

Place a stent (2 dots) to fix the m most prominentstenosis. m

most prominentstenosis.

Fully Immersive Fully Immersive Semi Immersive Semi Immersive
With WSS No WSS With WSS No WSS

Vardhan, et al. MICCAI 2019
Shi et al. Journal of Computational Science 2020

Development and Applications of Massively Parallel Models of Human Hemodynamics RANDLESLAB, DUKE UNIVERSITY



Holistic view of the patient
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Coarctation of the aorta

« Congenital heart defect
« Stenosis in descending aorta

« Affects 3,000 - 5,000 patients in U.S.
each year

« Intervention if Ap > 20 mmHg
« TAWSS -> plaque progression
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. Machine learning pipeline .

Step 3) Predict
AP, TAWSS

Step 1) Simulate hemodynamics

Step 2) Train machine learning model
Inputs are viscosity, flow rate, stenosis
degree, and period

Feiger et al. Nature Scientific Reports 2020
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AI-driven Simulations: Stratifying Patient Risk

Velocity streamlines  Wall shear stress Pressure
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Identified minimal number of simulations needed to
stratify patient risk

Feiger et al. Nature Scientific Reports 2020
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Fluid Structure Interaction Models
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. Cell-specific models .

=
— —
g

C
S
—

||||||

We need a tunable model to capture cancer cell-
specific parameters.

Balogh et al. Scientific Reports 2021

Development and Applications of Massively Parallel Models of Human Hemodynamics RANDLESLAB, DUKE UNIVERSITY



Predicting cellular attachment

0.5

0.25

0.0

FSI model

Bulk Fluid Simulation

Hynes et al. Science Advances 2020
Pepona et al. CMBE 2020
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Scaling the LBM-1IB model

CPU cores

32 64 128 256

1.0

Scaling efficiency
o o o
IS o oo
| | |

o
N

=== jdeal
CPU
GPU

0.0

6 12 24 48
GPUs
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. Adaptive Physics Refinement .

Macroscale

e Generate an adaptive domain,
multi-physics algorithm to
resolve tumor cell trajectories

Mesoscale

e Full or partial body
simulations in which parts of
the arterial system are purely ()
fluid, whereas other parts |
resolve red blood cells. - Fine-scale

e Utilize heterogeneous
architectures efficiently. Herschlag et al. IEEE Cluster 2019
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. Next steps: preparing for exascale .

e Large-scale simulations create
petabytes of data per
timestep.

e The gap between the speed of
computation and speed of I/0
is increasing with next
generation systems.

e Developing methods to enable
efficient, in situ and in transit
visualization and analysis.

Planned first Exascale

e Enabling communication free System in the US
and re-wind capabilities.

e Supported under the Aurora
Early Science Program for
Data and Learning.
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Use Case 2: Ventilator Splitting
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. Case study: ventilator shortage .

| | | IR /\v :
 Ventilators are vital equipment N -
for assistance with respiration ““"“T 2y ) ]

. A shortfall of 45,000-160,000 ISl =
ventilators with the U.S. was |\ “
predicted for the ongoing
pandemic

* Duke researchers paired up
with restor3D to develop a
safe, efficacious ventilator

splitter and resistor system
(VSRS)

Note: Ventilator splitting should NOT be standard-
of-care and should only be used as a last recourse.
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. What was needed? .

Tuning to select
optimal restrictor
for specific
patients

« Computational
fluid dynamics
model to capture
airflow

 VValidation of fluid
model

* Quick time-to-
solution

Calculator

Patient A
Weight:

Compliance:

Endotracheal Tube
Diameter:

Patient B
Weight:

Compliance:

Endotracheal Tube
Diameter:

Context

Peak Inspiratory
Pressure (PIP):

PEEP:

Respiratory Rate (RR):

Inspiratory/Expiratory

Ratio:

Retrieve Previous Values

70

20

< Results
kg
Results
ml/cmH20 R .
Resistor Radius (mm):
mm None 2.5 3 3.5 4 4.5 B 5.5
Patient A - No Resistor
Delivered Tidal 434 -
" Volume:
9
p——— Delivered PIP: 30 cmH20
Delivered PEEP: 8 cmH20
mm
Patient B - 4 mm
S Delivered Tidal 568 -
Volume:
mi/emHz0 Delivered PIP: 26.8 cmH20
breaths/
mrﬁi}ms Delivered PEEP: 8 cmH20

eeeeeeeee

? B | (=] ?

Calculator Setups Resources About

Courtesy of CrossComm
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Validating Computational Model

Measured Airflow Patient B (Benchtop Model)
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Simulated airflow for patient B
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4 Simulated airflow for patient A .,
/ .,
.‘I
..
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| &-...
Measured Airflow Patient A (Benchtop Model)
6.5 6 5.5 5 4.5 4 3.5 3

Resistor in circuit, 6mm is size of ET tube (mm)
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>200,000 Simulations Needed
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. Science-Driven Solution .

« COVID-19 HPC Consortium

« Coupled with Microsoft and Duke Office of
Information Technology

« Worked with Microsoft Azure
 Need for minimal time-to-solution

Within days of submitting our request, we completed
800,000 compute hours in one weekend.

Kaplan et al. CiSE 2020
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