
Development and Applications of Massively Parallel Models of Human Hemodynamics RANDLESLAB, DUKE UNIVERSITY            

   
    

 
 

Developing and deploying scalable, 
efficient, and accurate personalized flow 

simulations 

Amanda Randles 
Biomedical Engineering 

Duke University 



           

    
  

Why should you care
about personalized

flow models? 
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Me in one slide 
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Patient-Specific Computational ModelsPATIENT-SPECIFIC COMPUTATIONAL MODELS 

Feedback 

Visualization,
Interaction, and
Discovery 
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Patient-Specific Computational ModelsPATIENT-SPECIFIC COMPUTATIONAL MODELS 

Diagnostics Treatment Planning 

Mechanistic Massively Parallel Computing 
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Outline OUTLINE 

• Impact of increase in compute capabilities 
• Method overview 
• Application vignettes: 

• Vascular diseases 
• Fluid structure interaction 
• Ventilator splitting model 
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Patient-Specific Computational ModelsIMPACT OF INCREASE COMPUTE POWER 

• 2005 
• 1 processor 

• 2005-2008 
• Worked at IBM on the Blue 

Gene supercomputer 
• 65k processors 

• 2009 and 2010 
• Juelich Extreme Scaling 

Workshops 
• ~300k processors 

• 2015 
• Worked at LLNL 
• ~1.6 million processors 

• 2021 
• Aurora Early Science 
• Exascale 
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High-resolution multiphysics models are neededSIMULATIONS ARE COMPUTATIONALLY INTENSE 



           

  FULL ARTERIAL NETWORK 
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  Patient-Specific Computational ModelsCOMPUTER SCIENCE CHALLENGES 
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OutlineComputational Fluid Dynamics 

• Solves the (weakly compressible) Navier-
Stokes equations 
• Minimal communication between lattice 
points during update 
• Macroscopic quantities computed at lattice 
points 

X X1 2⇢ = fi u~ = c~ i fi P = c ⇢s⇢ 
i i 

• Straight forward treatment of complex 
geometry 
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     How do we make these models 
tractable? 
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 DOMAIN DECOMPOSITON 

mpo 
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  IRREGULAR DOMAIN DECOMPOSITION 
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68909 x 25107 x 188584 

509 billion 

0.15% 

MINIMIZING MEMORY FOOTPRINT 

Full body 
arterial 

20 micron 9 micron 

Data Grid 31009 x 11298 x 84863 

Data memory 8.22 PB 

Fluid nodes 45.8 billion 

Fluid memory 25.3 TB 

Fluid Fraction 0.15% 

90.2 PB 

140.7 TB 

           

  

      

     

     
  

  

     

 

• Sequoia Blue Gene/Q total system memory: 
1.6 PB 
• Indirect addressing is mandatory, and only 

the first step 
• Initialization and load balance now 

significantly more challenging 
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MEMORY LAYOUT SCHEMES 

Herschlag et al. IPDPS 2018 
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Efficient Use of Large-Scale Supercomputers 

Aortofemoral 

Aorta 

Cerebral 

Randles et al. Journal of Computational Science, 2015 
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APPLICATIONS OF MASSIVELY PARALLEL 
FLUID MODELS 
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Patient-Specific Computational ModelsCardiovascular Disease 

CADs share highest burden of heart diseases with 370,000 death per year 
in the United States. 

Personalized simulations can provide lesion-specific data to determine the 
functional severity of a stenosis and guide therapeutic action. 

50% of men and 64% of 
women who die of 
cardiovascular disease 
have no previously 
detected symptoms 
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Diagnostics 
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Fractional Flow Reserve Determining lesion ischema: to stent or not? 
1. COURAGE NEJM 2007 
2. DEFER Study JACC 2007 
3. FAME NEJM 2009 
4. FAME II NEJM 2012 
5. FAME III AHJ 2015 
6. Clinical outcomes FAME II, Circ. 2019 
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FFR is the current gold standard for the assessment of coronary 
artery disease 
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   Deriving flow from angiography data 

Significant physiology can be resolved using CA applied to 
CFD, which can help determine intracoronary hemodynamics 
more accurately and augment FFR 

Vardhan et al. Nature Scientific Reports 2019 
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Patient-Specific Computational ModelsImportance of including side branches 

Capturing the full arterial tree including 
side branches is critical to accurately 
assessing flow characteristics. 

Vardhan et al. Nature Scientific Reports 2019 
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  Capturing complex lesions 

• Complex lesions found in more than 20% of patients 

• High risk of developing secondary adverse cardiac events 

• Commonly excluded from most non-invasive clinical trials 

Determining hemodynamic precarity in complex lesions can help 
understand disease progression and guide future treatment 
decisions 

Vardhan et al. Nat. Sci. Rep. 
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Matching CA-CFD to in vivo data 

Case Vessel Clinical Resting Pressure CFD Resting Pressure Percent Error 
Case 1 LAD 0.93 0.94 0.6% 
Case 2 RCA 0.97 0.98 1.0% 
Case 3 LCx 0.96 0.97 1.0% 
Case 4 RCA 0.88 0.88 0.0% 
Case 5 LAD 0.95 0.95 0.0% 
Case 6 RCA 0.91 0.90 0.7% 
Case 7 Left Main 0.96 0.99 3.1% 
Case 8 LCx 1 0.98 2.0% 
Case 9 RCA 0.98 0.92 6.0% 
Case 10 LAD 0.82 0.72 12.2% 
Case 11 LAD 0.92 0.95 3.3% 
Case 12 RCA 0.98 0.93 5.1% 
Case 13 LAD 0.93 0.97 4.3% 
Case 14 RCA 1 0.95 5.0% 

3.16% 

Invasive resting gradient and CA-CFD resting gradient are in close 
agreement with each other 

Vardhan et al. Nature Scientific Reports 2021 
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   Mixed order models: VA-ECMO 
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   VA-ECMO – mechanical support system 
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Importance of the mixing zone 

• ~15% patients develop neurological 
complications 

• Cerebral hypoxia 
• Differential hypoxia - well 

oxygenated VA-ECMO flow 
meets poorly oxygenated 
cardiac output 

• Mixing zone – region of mixing 
in the aorta 

Important to determine how physician tunable parameters and 
cannulation location influence flow to the brain and location of 

mixing zone 
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  Building 1D-3D coupled models 

Pressure (mmHg) 

95.0 

91.0 

87.0 

83.0 

79.0 

75.0 

Feiger et al. J Biomech 2020 
Feiger et al. Comp in Bio and Med. 2020 
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Building 1D-3D coupled models 

• Coupled models provide accurate 
3D hemodynamics and capture VA-
ECMO properties 

• VA-ECMO flow rate drives mixing 
zone 

• High flow rates are needed to 
oxygenate the brain 

Feiger et al. J Biomech 2020 
Feiger et al. Comp in Bio and Med. 2020 
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 Treatment Planning 
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Why HARVEY?Treatment planning 

Results from CFD simulations can guide 
clinical treatment. 
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ANKLE-BRACHIAL INDEX

Gounley et al. Journal of Biomechanics 2019

Simulations can capture local effects on ABI
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HarVis: XR interaction

• Using devices like the Occulus Rift, HTC Vive, and 
zSpace to investigate different modes of interaction

Vardhan et al. MICCAI 2019
Shi et al. Journal of Computational Science 2020
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Assessing user interaction

• Full immersive devices can provide reduced error for 
completing defined tasks like conduit placement or virtual 
revascularization

• Fully immersive devices prove most effective for PCI 
planning

• Access to shear stress maps reduces differences in
participant accuracy across devices
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Holistic view of the patient
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Coarctation of the aorta

Δ"

• Congenital heart defect
• Stenosis in descending aorta
• Affects 3,000 – 5,000 patients in U.S. 

each year 
• Intervention if #$ > 20 mmHg
• TAWSS –> plaque progression
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Machine learning pipeline

Feiger et al. Nature Scientific Reports 2020
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AI-driven Simulations: Stratifying Patient Risk

Feiger et al. Nature Scientific Reports 2020

Identified minimal number of simulations needed to 
stratify patient risk 

TA
W

SS
 (

Pa
)
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Fluid Structure Interaction Models
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Cell-specific models

We need a tunable model to capture cancer cell-
specific parameters.

Balogh et al. Scientific Reports 2021
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3D Bioprinted Bed

Bulk Fluid Simulation

FSI model

Predicting cellular attachment

Hynes et al. Science Advances 2020
Pepona et al. CMBE 2020



Development and Applications of Massively Parallel Models of Human Hemodynamics RANDLESLAB, DUKE UNIVERSITY

Scaling the LBM-IB model

Gounley et al. ICCS 2019
Ames et al. JCS 2020
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Adaptive Physics Refinement

● Generate an adaptive domain, 
multi-physics algorithm to 
resolve tumor cell trajectories 

● Full or partial body 
simulations in which parts of 
the arterial system are purely 
fluid, whereas other parts 
resolve red blood cells.

● Utilize heterogeneous 
architectures efficiently. Herschlag et al. IEEE Cluster 2019
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Next steps: preparing for exascale

● Large-scale simulations create 
petabytes of data per 
timestep.

● The gap between the speed of 
computation and speed of I/O 
is increasing with next 
generation systems.

● Developing methods to enable 
efficient, in situ and in transit 
visualization and analysis.

● Enabling communication free 
and re-wind capabilities.

● Supported under the Aurora 
Early Science Program for 
Data and Learning.

Planned first Exascale
System in the US
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Use Case 2: Ventilator Splitting
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Patient-Specific Computational ModelsCase study: ventilator shortage 

• Ventilators are vital equipment 
for assistance with respiration

• A shortfall of 45,000-160,000 
ventilators with the U.S. was 
predicted for the ongoing 
pandemic

• Duke researchers paired up 
with restor3D to develop a 
safe, efficacious ventilator 
splitter and resistor system 
(VSRS)

Note: Ventilator splitting should NOT be standard-
of-care and should only be used as a last recourse. 
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Patient-Specific Computational ModelsWhat was needed?

• Tuning to select 
optimal restrictor 
for specific 
patients
• Computational 
fluid dynamics 
model to capture 
airflow 
• Validation of fluid 
model
• Quick time-to-
solution Courtesy of CrossComm
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Validating Computational Model
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>200,000 Simulations Needed

Minimum 
Value

Maximum 
Value

Step 
Size

Pulmonary Compliance (ml /  
cmH2O)

10 100 1-2

Endotracheal Tube Diameter 
(mm) 

6 8.5 0.5

Peak Inspiratory Pressure 
(cmH2O)

20 50 1

Positive End-Expiratory 
Pressure (cmH2O)

5 20 1

Inspiratory to Expiratory Ratio 1:3 1:1 fractional

Respiratory Rate (breaths / 
minute)

10 30 1

Resistor Radii (mm) 2.5 5.5 0.5
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Patient-Specific Computational ModelsScience-Driven Solution

• COVID-19 HPC Consortium
• Coupled with Microsoft and Duke Office of 

Information Technology
• Worked with Microsoft Azure
• Need for minimal time-to-solution

Within days of submitting our request, we completed 
800,000 compute hours in one weekend.

Kaplan et al. CiSE 2020
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