
WEBVTT 
 
00:00:00.000 --> 00:00:00.000 
So I I have close captioning turned on. I gonna go ahead and turn boarding on, and I will get 
ready to open up the webinar. 
 
00:00:00.000 --> 00:00:09.000 
Now 
 
00:00:09.000 --> 00:00:14.000 
Where's the camera it's actually in the far it's in the back. 
 
00:00:14.000 --> 00:00:21.000 
Yeah, your point got it. My head is chopped off. 
 
00:00:21.000 --> 00:00:33.000 
But it's not that important, anyway. Good talking Oh, there we go ain't no worry about it. 
 
00:00:33.000 --> 00:00:36.000 
Somebody just fixed it. Okay, We're live whenever you're ready to start. 
 
00:00:36.000 --> 00:00:41.000 
Yeah, Thanks. just making sure that the participants have leveled off. 
 
00:00:41.000 --> 00:00:46.000 
Gotcha. Yeah, it looks looks good. okay, hi everyone once again I'm. 
 
00:00:46.000 --> 00:00:52.000 
I'm Michael Litman the division director in size for the division of information and intelligent 
systems at some point. 
 
00:00:52.000 --> 00:01:05.000 
I'm going to stop stumbling over that i'm we've had now 3 this will be our third distinguished 
lecture that we've been running this year, and so far i've introduced all the speakers but that 
will 
 
00:01:05.000 --> 00:01:08.000 
stop today. This is this is my last one, and and other division. 
 
00:01:08.000 --> 00:01:14.000 
Directors in the directorate are going to be handling the future talks, but i'm super excited to 
get to do this one. 
 
00:01:14.000 --> 00:01:24.000 



This talk has been a long time coming. Pat Hanrahan was actually invited to speak as a 
distinguished lecturer by my predecessor before the pandemic, and he agreed to come. 
 
00:01:24.000 --> 00:01:33.000 
But then the pandemic happened, and it would. He was given the option of speaking to 
everyone virtually, but he really wanted to come in person. 
 
00:01:33.000 --> 00:01:38.000 
And so, when things restrictions started to lift, he reached out to us again and said, Hey, can I 
come in person? 
 
00:01:38.000 --> 00:01:49.000 
And we were so excited to set things up for him to do that a Pat Henrahan is a professor at 
Stanford and a recent touring award winner and he's won 3 accounts awards so that basically 
 
00:01:49.000 --> 00:02:04.000 
puts him halfway between Donald knuth and meryl streep pat works in computer graphics 
which is just fascinating area of computer science that has overlap with basically every other 
part of computer science it's got math 
 
00:02:04.000 --> 00:02:08.000 
and theory it's got systems it's got an aesthetic component to it. 
 
00:02:08.000 --> 00:02:12.000 
A design part. How you think about how people perceive things. 
 
00:02:12.000 --> 00:02:21.000 
Physics simulation. It really covers absolutely everything. and and Pat has been very, very 
influential, and his he's recently moved it. 
 
00:02:21.000 --> 00:02:26.000 
The field in the direction of programming languages and I think that's going to be part of what is 
covered in today's talk. 
 
00:02:26.000 --> 00:02:32.000 
Now I Hadn't met Pat before today but I would have known him in another life, because when I 
started my PHD. 
 
00:02:32.000 --> 00:02:37.000 
I worked with Andrew Wittgen at Carnegie, Mellon. 
 
00:02:37.000 --> 00:02:40.000 
Andrew went on to work at pixar on the renderman system, which was Pat's brainchild. 
 



00:02:40.000 --> 00:02:49.000 
So I assume that they've interacted quite a bit I've heard wonderful things about Pat from 
Daniel Daniel Ritchie, who's a junior colleague of mine at Brown, and one of 
 
00:02:49.000 --> 00:02:58.000 
Pat's former students Now, if you've not heard of pat or renderman, for that matter, you 
undoubtedly have seen what he and it have done. 
 
00:02:58.000 --> 00:03:05.000 
Renderman is the computer graphic system that turns descriptions of scenes into the amazing 
visual worlds you see in, for example, Pixar movies. 
 
00:03:05.000 --> 00:03:11.000 
So I am absolutely sure that you will find this talk both intellectually and aesthetically 
stimulating. 
 
00:03:11.000 --> 00:03:21.000 
So let's welcome, pat Hanraham, thank you thank you Michael That's very nice introduction, 
and it's great to be here, as I said. 
 
00:03:21.000 --> 00:03:26.000 
I sort of held out to have an in-person talk, so I know not everybody's able to attend. 
 
00:03:26.000 --> 00:03:36.000 
But I was excited to come and You know I just hope I get a chance to talk to some people in 
person afterwards as well, and for all those is still in virtual land. 
 
00:03:36.000 --> 00:03:45.000 
It's good to have you here as Well, so this talk is actually based on my Twitter word lecture, 
which also I just recently gave because I wanted to do that in person. 
 
00:03:45.000 --> 00:03:50.000 
And there's a lot of stuff here about my life as a scientist. 
 
00:03:50.000 --> 00:03:59.000 
Oh, well, first actually, the first thing I forget what I want to say here is I want to thank Nsf for 
all the support that I've received through the years. 
 
00:03:59.000 --> 00:04:08.000 
When I first went to Stanford I got a large, a medium scale infrastructure grant which actually 
launched the computer Graphics laboratory at Stafford. 
 
00:04:08.000 --> 00:04:15.000 



It was a five-year grant fairly large Grant and that just you know, Stanford really didn't have 
computer graphics. 
 
00:04:15.000 --> 00:04:21.000 
And without that Grant we went to Bill to set up our program, and I think it was a very 
successful and still is a very successful program. 
 
00:04:21.000 --> 00:04:27.000 
And then, of course, I have many had many individual words throughout the years as well. 
 
00:04:27.000 --> 00:04:30.000 
I, in my last real, significant interaction with Nsf. 
 
00:04:30.000 --> 00:04:34.000 
Was we working with Larry Rosen bloom on the Fedava program? 
 
00:04:34.000 --> 00:04:40.000 
So I was in his sort of core. in her team. We had a workshop and let me launch that program 
which was on data analysis and visualization. 
 
00:04:40.000 --> 00:04:45.000 
So, you know, Andsf is really dear to my heart and I want to thank you for my research. 
 
00:04:45.000 --> 00:04:51.000 
I won't be even here to build funding my research I wouldn't be here if you hadn't done that. 
 
00:04:51.000 --> 00:04:57.000 
So. thank you. so, anyway. But this talk is a bit of a retrospective on my career, and I want to 
start. 
 
00:04:57.000 --> 00:05:04.000 
Actually, I added, this slide about my advisor. Okay, So I actually am not a computer scientist. 
 
00:05:04.000 --> 00:05:07.000 
I've never really taken any computer science courses in my life. 
 
00:05:07.000 --> 00:05:20.000 
I was trained as a physicist, and the person on my left was my undergraduate Advisor Heinz 
Barshall, who worked on the Manhattan project, and he studied basically cross-sections of 
 
00:05:20.000 --> 00:05:32.000 
various atomic reactions, like in particular neutron cross-section, said he measured what the 
probability of not neutron being absorbed into uranium and cause and fission. was and he was 
a great experimentalist. 



 
00:05:32.000 --> 00:05:40.000 
Actually, and I actually learned that analysis from him, too. I mean, he obviously, you know, as 
an experimentalist you have to do that analysis. 
 
00:05:40.000 --> 00:05:52.000 
But he was always interested in how we could confirm theories with experiment, and I learned 
physics from him, and he was an unbelievable mentor as a even as an undergraduate My other. 
 
00:05:52.000 --> 00:05:59.000 
2, I decided to leave sort of more theoretical physics, particle physics, and go into biophysics. 
 
00:05:59.000 --> 00:06:02.000 
And so I had 2 advisors there, and in my PHD. 
 
00:06:02.000 --> 00:06:07.000 
One was Leonard Year which i'll talk about he actually studied a deep learning. 
 
00:06:07.000 --> 00:06:19.000 
This is in 1,980, purely calling pyramidal neural networks, and in fact, he was about the only guy 
around still studying neural networks, and I was in a neurobiology at the 
 
00:06:19.000 --> 00:06:23.000 
time, and of course I was super into neural networks. 
 
00:06:23.000 --> 00:06:32.000 
But you know that was considered really bad bad idea to be in neural networks. So i'm still 
trying to reconcile that with the modern world. 
 
00:06:32.000 --> 00:06:43.000 
And then, and then my advisor, my main police advisor, was Tony Strand, who was in the 
department of zoology and studied neurobiology of of invertebrates. 
 
00:06:43.000 --> 00:06:52.000 
So I worked on the motor nervous system of Ascarus lumberquitis, which is a neat and Tony. 
 
00:06:52.000 --> 00:06:56.000 
My advisor. I came from Sydney banner's lab who worked. 
 
00:06:56.000 --> 00:07:10.000 
He started to work on C. Elegans, and you know what I really learned from Tony and and his 
extended family was, which includes Cindy Brenner, Francis Crick, John Zulston, who ran the 
Human Genome 
 



00:07:10.000 --> 00:07:20.000 
project and won a Nobel prize for programmed cell taposis was to do long-term research 
projects. 
 
00:07:20.000 --> 00:07:26.000 
And I think this project i'm going to talk about it was actually like my 30 year Long-term 
Research project. 
 
00:07:26.000 --> 00:07:37.000 
But you know I was just very fortunate in in in my graduate career to have advisors who 
stressed long-term research, not just writing individual papers. 
 
00:07:37.000 --> 00:07:41.000 
And and so you'll see that in the talk fight get to it. 
 
00:07:41.000 --> 00:07:50.000 
Okay, but anyways, I really want to thank them and i'll have more to say about my career. 
Maybe a little bit. I don't want to elaborate too much time in, because I almost want to talk 
about technical stuff, but I 
 
00:07:50.000 --> 00:07:56.000 
do think you'll see there's a sort of trend towards being us in long-term research. 
 
00:07:56.000 --> 00:07:59.000 
And in my career. Okay, So let me start with the real stuff. 
 
00:07:59.000 --> 00:08:04.000 
So I went before I got the Pixar. They made this picture, which is a very famous picture in 
computer graphics. 
 
00:08:04.000 --> 00:08:12.000 
This is ancient history, called the road to Point. raise but point and raise is a national siege 
point. raise national seashore. It's just north of San Francisco. 
 
00:08:12.000 --> 00:08:21.000 
It's a very beautiful place, and they were working for Lucas film, and they were trying to 
convince him that computers could be used to make imagery for the movies. 
 
00:08:21.000 --> 00:08:30.000 
So they made this as a teaser for him and the idea was, If you're George Lucas hello like Hot No, 
the Hot Rod sports car, you know. 
 
00:08:30.000 --> 00:08:35.000 



He would be driving along this road, and you know he just imagined him like driving into Porn 
Range. 
 
00:08:35.000 --> 00:08:45.000 
What would he see, you know, like, and suppose you wanted to create this world that he and 
he might imagine you drive something like that. And he'd say, I want to put that in star wars, or 
something like that so you just had to be able to do a 
 
00:08:45.000 --> 00:08:49.000 
bunch of things, and this was just trying to demonstrate where they had got. 
 
00:08:49.000 --> 00:08:52.000 
So you had to be able to make, you know, terrain like mountains. 
 
00:08:52.000 --> 00:08:58.000 
You had to be able to make. waves like waterways. you had to do atmospheric scattering like 
clouds and rainbows. 
 
00:08:58.000 --> 00:09:02.000 
You had to be able to draw, you know plants or make plants. 
 
00:09:02.000 --> 00:09:04.000 
You know, man-made objects like fences, and so on. 
 
00:09:04.000 --> 00:09:07.000 
And the idea was I just what would it take to do this? 
 
00:09:07.000 --> 00:09:17.000 
And trying to show him you could do it. And then the the system we had at Pixar was called 
Rays, which actually the name was invested by Lauren. 
 
00:09:17.000 --> 00:09:23.000 
Carpenter for renders everything you ever saw or could see. 
 
00:09:23.000 --> 00:09:29.000 
Okay. And so the idea was like, So what would it take to build a system that would renders 
anything you could see like in the everyday world? 
 
00:09:29.000 --> 00:09:37.000 
And that was our motivation. So that was our problem statement in some sense like, what 
would it take to do that? Ok? 
 
00:09:37.000 --> 00:09:48.000 



Very ambitious. And then there was one other thing that turned out to be important which led 
to this idea of photorealism, which is that you had. 
 
00:09:48.000 --> 00:09:56.000 
You take live action. that was taken with a camera and you have to be able to overlay computer 
generated stuff, and they'd have to merge seamlessly. 
 
00:09:56.000 --> 00:10:00.000 
Okay, that is the the real world and the virtual world. 
 
00:10:00.000 --> 00:10:02.000 
Had you come together like sort of augmented reality? 
 
00:10:02.000 --> 00:10:04.000 
And sometimes can you augment the real world with this virtual thing? 
 
00:10:04.000 --> 00:10:11.000 
And this is an example of an early thing. They did from this movie. young Sherlock Holmes. 
were the stained glass man on family. 
 
00:10:11.000 --> 00:10:20.000 
I've seen this but sting last man so jumped off this stained glass window, and now walking 
around in the church, and that was really hard, because you could not have any artifacts. 
 
00:10:20.000 --> 00:10:25.000 
You know you couldn't have like jagies you couldn't have any Alicine artifacts you also had. 
 
00:10:25.000 --> 00:10:32.000 
It's surprisingly, hard to simulate a real camera because you have to have depth of field and 
motion blur and other things like that. 
 
00:10:32.000 --> 00:10:34.000 
And you, of course, have to do the lighting correctly. 
 
00:10:34.000 --> 00:10:38.000 
So you have to inherit the lighting from the real world on the virtual worlds. 
 
00:10:38.000 --> 00:10:43.000 
You have to have some interaction there. So this was actually a hard thing to do. 
 
00:10:43.000 --> 00:10:54.000 
And then the other really hard thing about it. And this this slide came from a retreat that I 
actually led, because we wanted to build a raise machine right as a machine that could render 
everything you ever saw. 



 
00:10:54.000 --> 00:10:58.000 
But this is what we considered our computational budget to be. 
 
00:10:58.000 --> 00:11:01.000 
So we we wanted to render. We thought to make that simple picture. 
 
00:11:01.000 --> 00:11:11.000 
It would take about 80 million polygons and these were micropolitons, because we wanted 
really idi Biddy polycons up essentially in one pixel in size, because it was all that detail there 
you couldn't get 
 
00:11:11.000 --> 00:11:14.000 
by with giant. guns! You need really any bitty, Buck, Huh! 
 
00:11:14.000 --> 00:11:22.000 
And you know it just worked out to be like 24 gigaflops to make this image, and i'm not going to 
go through this whole thing. but it was sort of inconceivable about the time I mean 
 
00:11:22.000 --> 00:11:30.000 
i'll talk about this in hardware I mean at the time when Sgi machines they were rendering like 
10,000 polygons in real time, you know these like flight simulators. 
 
00:11:30.000 --> 00:11:44.000 
I'll show you some pictures of that and so this just you have to, just as a graphics person This 
has been my world for my whole life that I want like 10 orders of magnitude, and more 
computing power than I already had to have you know I mean you 
 
00:11:44.000 --> 00:11:48.000 
know that just that's what we think it would take to make the simplest possible picture. 
 
00:11:48.000 --> 00:11:50.000 
It's not like just some pipe dream right this is based. 
 
00:11:50.000 --> 00:12:03.000 
This is an actual calculation back the Emelope calculation that we made at the time, and you 
know if you look at it today, you know I mean this is some stats I have you is This is pretty. still 
current. 
 
00:12:03.000 --> 00:12:10.000 
But about, you know, over a day of computing per frame in a movie, maybe 2 days, 29 h. 
 
00:12:10.000 --> 00:12:13.000 
Okay, a 100 million hours total of cpu time for the movie. 



 
00:12:13.000 --> 00:12:22.000 
You can work it out, I guess. my Slides getting blocked off here, but it's about It's about a giga 
flop, per Pixel, right now, going into a typical movie frame. 
 
00:12:22.000 --> 00:12:30.000 
And it just you know it's a kicks incredible monitor computing to do all the stuff you need to do 
to make that image. 
 
00:12:30.000 --> 00:12:38.000 
And and that's just been a driving force in my work through the years, is how to get access to 
that kind of computing power, and yet still solved. 
 
00:12:38.000 --> 00:12:46.000 
This really challenging problem? So in some sense, were our goals at the time. 
 
00:12:46.000 --> 00:12:58.000 
And i'm, not going to spend a lot of time talking about renderman. but I did just recently write a 
paper called the Designer Renderman, which is sort of a fun thing independent of the 
tournament, but just sort of like how 
 
00:12:58.000 --> 00:13:01.000 
I said about designing the system you know just like it's sort of like, you know. 
 
00:13:02.000 --> 00:13:04.000 
I really interest in software design might want to read that like. 
 
00:13:04.000 --> 00:13:14.000 
Here I am. as a designer. how do I make trade-offs. How do I put together all the pieces in order 
to make this particular? 
 
00:13:14.000 --> 00:13:25.000 
Okay. So anyway, that's just some background. about how computer graphics people think 
about computation. Or, you know, people mentioned that computer through graphics overlap 
with computer science in many ways. 
 
00:13:25.000 --> 00:13:30.000 
One thing is just how do you build computers that are as fast computers in the world? 
 
00:13:30.000 --> 00:13:33.000 
Okay. Another thing we did as part of the renderman system. 
 
00:13:33.000 --> 00:13:41.000 
I worked on what I call shading languages. and, by the way to why would I work on Saturday? 



 
00:13:41.000 --> 00:13:45.000 
Somebody asked me recently, Have you had any training and programming languages? 
 
00:13:45.000 --> 00:13:54.000 
And I said, No, and but that's not quite true Okay, So this is me as a grad student at the 
University of Wisconsin. 
 
00:13:54.000 --> 00:14:04.000 
Notice that this is a wet lab right there's a so that wasn't my idea about that I mean, and I 
literally taught myself programming in order to do this kind of stuff. 
 
00:14:04.000 --> 00:14:12.000 
But anyways oh, sure. How do I get those we need an aircraft? 
 
00:14:12.000 --> 00:14:37.000 
Okay, do that, I see? Can also remember the sound. Yeah, see that 
 
00:14:37.000 --> 00:14:42.000 
Thank you. Awesome. all right. thanks for interrupting me that's great. 
 
00:14:42.000 --> 00:14:49.000 
Okay. So this actually was the first paper I ever wrote at the that report. You can go if you 
download it from the technical port server at us. 
 
00:14:49.000 --> 00:14:57.000 
It's Wisconsin you can actually get it so. but it was. it was called Procedures for parallel array 
processing a pipeline display terminal. 
 
00:14:57.000 --> 00:15:02.000 
And actually it should be a language for parallel ray processing on a pipeline display. turmoil. 
Okay. 
 
00:15:02.000 --> 00:15:10.000 
So the first thing I worked on, so I immediately was interested in computer languages back 
then, and actually, I mentioned Leonard. 
 
00:15:10.000 --> 00:15:17.000 
So my advisor, Leonard, Jr. He was an early Ai researcher. 
 
00:15:17.000 --> 00:15:22.000 
And we started working on Ai in the sixtys, and he got very instant on time. 
 
00:15:22.000 --> 00:15:26.000 



I was in there in what he called multi-computer architectures. 
 
00:15:26.000 --> 00:15:31.000 
For, you know, artificial intelligence, but in particular what he called pyramidal neural networks. 
 
00:15:31.000 --> 00:15:37.000 
So here's his book, i'm saying this book is probably published 1980 or so like this. 
 
00:15:37.000 --> 00:15:45.000 
I mean, this is not a new idea. Building computers with, you know, pyramidal neural networks, 
like many layers of neural network, and this was very much more to motivate. 
 
00:15:45.000 --> 00:15:50.000 
Of course, by the way, the human brain is architected, and you see, you started seeing. 
 
00:15:50.000 --> 00:15:56.000 
So what I was supposed to do was take some graphics hardware that we had, and build a 
language for doing pure metal. 
 
00:15:56.000 --> 00:16:05.000 
Neural networks calculations on it. Now, you know, this thing was incredibly slow by compared 
to what you know people are using nowadays. 
 
00:16:05.000 --> 00:16:13.000 
But the thought that this would be a really efficient way of implementing artificial intelligence, 
and he wrote a lot of other books which I highly recommend You read. 
 
00:16:13.000 --> 00:16:16.000 
I mean. the guy was a genius. way out of his time, like one is. 
 
00:16:16.000 --> 00:16:19.000 
His most well-known book, which I think was in the 70 S. 
 
00:16:19.000 --> 00:16:23.000 
Was called par recognition, learning, and thought, and he was just. 
 
00:16:23.000 --> 00:16:31.000 
Had this view of how to compute on the brain which I think is still would would actually be 
closer to what we're arriving at. 
 
00:16:31.000 --> 00:16:39.000 
Now, which is hybrid and neural networks for symbolic processing, which was his big thing. I 
just want to mention that so. 
 



00:16:39.000 --> 00:16:44.000 
But this idea of shay trees and languages came up in graphics. 
 
00:16:44.000 --> 00:16:52.000 
My first invented sort by Rob Cook at lucas film, and what he was interested in doing was 
simulating different materials. 
 
00:16:52.000 --> 00:16:56.000 
So he's very famous for a paper he wrote on Why does copper look different than plastic. 
 
00:16:56.000 --> 00:17:00.000 
That's not the official tire But that's basically why do metals look different than plastic? 
 
00:17:00.000 --> 00:17:03.000 
And so here we have the same geometry on the right. 
 
00:17:03.000 --> 00:17:10.000 
We with different simulated materials, and he would write these little expressions in this 
language that would sort. 
 
00:17:10.000 --> 00:17:18.000 
He could type in some formula as a model of copper versus, for you know, some other material, 
and this is the one for copper. 
 
00:17:18.000 --> 00:17:26.000 
And he was just interested in like you know, having the flexibility to sort of capture all these 
different kinds of materials so like it. 
 
00:17:26.000 --> 00:17:31.000 
Wasn't going to be one material in the world There were a bunch of material part of this 
renders everything you ever saw, idea. 
 
00:17:31.000 --> 00:17:42.000 
So you'd have to and So this actually this little you Could type in these low expressions, and 
they would get downloaded into rays, and and then you could run them and then get different 
materials. 
 
00:17:42.000 --> 00:17:46.000 
The other thing that was really popular time was procedural texturing. 
 
00:17:46.000 --> 00:17:58.000 
So here's an example of a file on paper the next year by a person named Ken Perlin said Inyou, 
and he was trying to emulate these light, turbulent turbulent kinds of things, and he did that 
with like a 



 
00:17:58.000 --> 00:18:00.000 
fractal noise, texture, and i'll show you an example that. 
 
00:18:00.000 --> 00:18:09.000 
And so the motivation the main motivation for these languages was, people wanted to explore 
computational models of appearance. 
 
00:18:09.000 --> 00:18:12.000 
You know it wasn't just physics it wasn't just a formula. 
 
00:18:12.000 --> 00:18:21.000 
You could capture and get out of book. You guys have like sort of a computer simulating 
something are generating a pattern. So here was my language. 
 
00:18:21.000 --> 00:18:33.000 
This actually is real code that I wrote i'm making this sort of corroded teapot, and you actually 
and and you know this, you know, this was in the era of like Unix. 
 
00:18:33.000 --> 00:18:42.000 
And yeah and lax, if you know that or you could just roll your own language like John Bentley's 
little languages, if you remember that sort of thing, you know. 
 
00:18:42.000 --> 00:18:49.000 
And there are all these languages on unix like and you know Enron and various other ones like 
that. 
 
00:18:49.000 --> 00:18:56.000 
So, anyway, you know. and so this was this is a typical render Man Shader that you would write 
and you know what you're doing. 
 
00:18:56.000 --> 00:19:00.000 
There is you're adding up a bunch 6 actors with noise, which is bandwidth. 
 
00:19:00.000 --> 00:19:04.000 
You have a one number it have fall off to be like a flag. 
 
00:19:04.000 --> 00:19:18.000 
The light spectrum, and then that creates this turbulence thing, and then you perturb it surface 
along the normal by the magnitude of the turbulence at that point which is varying function of 
space knows that the noise function is indexed by 
 
00:19:18.000 --> 00:19:26.000 



position and position is a position on the surface that's being shaded. and now we compute a 
new position, and then we can new normal. 
 
00:19:26.000 --> 00:19:33.000 
Once we deform the surface new normal. Oh, then we can go computer color from that. 
 
00:19:33.000 --> 00:19:46.000 
And this is what you would do if you wanted by having this little language. We could add this to 
the system, and you know there was a bunch of interesting things in this language. 
 
00:19:46.000 --> 00:19:51.000 
I'm not going to spend a lot of time on it, but you know we have these sort of like control flow 
constructs. 
 
00:19:51.000 --> 00:19:58.000 
If you like. illuminate and luminous lunate was used by a light source that casts wide into the 
world. 
 
00:19:58.000 --> 00:20:06.000 
So imagine this is like a loop, say, sending out rays of light from that point on light swars, and 
the luminance was a reverse of that computing. 
 
00:20:06.000 --> 00:20:12.000 
The aluminum of incoming light, and computing how much gets reflected in here. 
 
00:20:12.000 --> 00:20:26.000 
So these were the sort of 2 fundamental things you had to simulate lights, and you had to 
stimulate reflection materials, and that's how was expressed in the language in this, you know, 
as a domain specific language and his design for doing these shaining 
 
 
00:20:26.000 --> 00:20:40.000 
calculations. and you know I just have always been fascinated by designing languages like this 
for a computing task, because I just think there are very elegant ways of building very 
extendable systems, and just really fun to think 
 
00:20:40.000 --> 00:20:45.000 
through like? what are the abstractions you have, and how do you compose them? 
 
00:20:45.000 --> 00:20:49.000 
And things like that. Ok? So anyway, so that's what I sort of did there? 
 
00:20:49.000 --> 00:20:54.000 
So we had this so, and the main reason I did that then was I was being. 



 
00:20:54.000 --> 00:20:59.000 
I was a little overwhelmed beyond us. So I was a new PHD. 
 
00:20:59.000 --> 00:21:08.000 
Graduate, and I was given responsibility for maintaining this renderman software, this race 
offer and designing the system. 
 
00:21:08.000 --> 00:21:09.000 
And remember, you know there were only like 3 of us doing this. 
 
00:21:09.000 --> 00:21:24.000 
I mean, was in charge, and I had this huge list of feature requests, like, you know, thousands of 
features people wanted, and I could either sit down and try to add them one at a time, or I 
could design and demand this all I knew about computers 
 
00:21:24.000 --> 00:21:27.000 
outside of time I could design a language and have them do with it. 
 
00:21:27.000 --> 00:21:31.000 
I could design one language and then have them implement all the features, you know. 
 
00:21:31.000 --> 00:21:38.000 
And that was very much spirit of computer science. back then you'd build these powerful tools, 
and it was okay to design new languages back. 
 
00:21:38.000 --> 00:21:42.000 
Then. now it's maybe not as okay, but it was okay to do that. 
 
00:21:42.000 --> 00:21:48.000 
So it was very much a pragmatic thing it's like, How can I make the system as flexible and 
extensible as I can? 
 
00:21:48.000 --> 00:21:55.000 
Okay, So then, now things start getting instrument so I didn't, quite at the at the same time. 
 
00:21:55.000 --> 00:22:04.000 
People started building graphics workstations. So now, so this is correctly, is a PHD student 
mind. 
 
00:22:04.000 --> 00:22:12.000 
But he actually he actually spent. He went off with Jim Clark to found Sgi, and he designed a lot 
of these early Sgi workstation. 
 



00:22:12.000 --> 00:22:15.000 
So he wrote a paper in 1,992 which is around the same time. 
 
00:22:15.000 --> 00:22:23.000 
I'm doing this, which is describing all the sgi workstations, and how they sort of fit into different 
generations. 
 
00:22:23.000 --> 00:22:29.000 
So the first one sort of drew wireframes, second ones who did field polygons. 
 
00:22:29.000 --> 00:22:37.000 
But the polygons were like constant colors or interpolated colors, and that require a lot more 
computing, because now you had to write all those pixels into the framework. 
 
00:22:37.000 --> 00:22:41.000 
You had to create all those pixels and write them into the frame buffer, and that was like orders 
of magnitude. 
 
00:22:41.000 --> 00:22:50.000 
More computing. Oh, no, that's fundamentally the problem in graphics is like you have 
something, but you have to do it for every pixel. right? 
 
00:22:50.000 --> 00:22:54.000 
So then you have millions of pixels. And now, suddenly one nips machine is a one instruction 
per second machine. 
 
00:22:54.000 --> 00:23:00.000 
So anyway, that did that. And then the third generation was texture. 
 
00:23:00.000 --> 00:23:06.000 
Min happy, where you basically place an image on each surface, or made up more than one 
image on each surface. 
 
00:23:06.000 --> 00:23:15.000 
And this requirement even radically more hardware, because you had to now look up the 
texture and and filter it, and all sorts of other things. 
 
00:23:15.000 --> 00:23:21.000 
You had to do the address calculations for the book of the texture, and you had you filter it with 
alias. 
 
00:23:21.000 --> 00:23:25.000 
So these, you know, this would start requiring unbelievable amounts of computing power. 
 



00:23:25.000 --> 00:23:36.000 
To do this and one thing that kurt did which I want to spend a couple of minutes on just 
because I think it's really important Is he defined something called Opengl. 
 
00:23:36.000 --> 00:23:41.000 
And after this, and i'm not going to you know again. 
 
00:23:41.000 --> 00:23:51.000 
This is by more detail than we can get into, but opengl defines the classic graphics pipeline, 
which we teach in intrographic, where you send triangles down the pipeline made up of 
 
00:23:51.000 --> 00:23:57.000 
Vertices calculations are done on vertices they've been converted into 2 d triangles. 
 
00:23:57.000 --> 00:24:00.000 
Those are rasterized or converted to pixels, or we call those fragments. 
 
00:24:00.000 --> 00:24:07.000 
And then those fragments are textured and then they're merged into the frame buffer to be 
displayed. 
 
00:24:07.000 --> 00:24:14.000 
So what was interesting about this was he defined the reason. 
 
00:24:14.000 --> 00:24:28.000 
He defined open jails he wanted to sort of emulate a cpu's isa Now, people don't know this, but 
if but one of the places that I had to do see if I brought school you just want to put it 
 
00:24:28.000 --> 00:24:37.000 
pass away. But you know he came up with this really important idea is you could specify an 
architecture independent of its implementation, which was really his idea. 
 
00:24:37.000 --> 00:24:42.000 
And by the way, he coined the term architecture in computer science. 
 
00:24:42.000 --> 00:24:48.000 
His book is, if you haven't read this book I highly recommend you read it because it's nowadays. 
 
00:24:48.000 --> 00:24:54.000 
Computer architecture is how we build a nips machine Now Then it was like here's what it takes 
to be an architecture. 
 
00:24:54.000 --> 00:24:58.000 
And here's what it takes to be an architect it's a more meta thing. 



 
00:24:58.000 --> 00:25:02.000 
Now we're just very focused on how to build one particular thing. 
 
00:25:02.000 --> 00:25:07.000 
It's like if you define our research on how to build a building, you know, versus some grand 
scheme about, you know. 
 
00:25:07.000 --> 00:25:16.000 
Maybe some idealistic, and he came up the deal with a specification, and and Kurt followed 
that idea. 
 
00:25:16.000 --> 00:25:26.000 
So he said, i'm gonna have a bunch of state including a frame buffer, and i'm going to specify 
these Api calls, and they're going to i'm going to tell you how they update this same so you 
 
00:25:26.000 --> 00:25:28.000 
have a bunch of state, and you have a bunch of things you can do. 
 
00:25:28.000 --> 00:25:34.000 
This State to update it, and that and that's very much like the Cpu. 
 
00:25:34.000 --> 00:25:40.000 
If you have a cpu through the cpu man you know like an arm manual, it'll say if I implement the 
ad instruction. 
 
00:25:40.000 --> 00:25:46.000 
There are 3 registers I read from 2 of them, and I calculate the sum, and then I add it. 
 
00:25:46.000 --> 00:25:54.000 
I write it another register and i've told you how i've updated state given the current State, and 
the specification of instruction. 
 
00:25:54.000 --> 00:25:59.000 
And so he did that for open Di and and and the key thing about this. 
 
00:25:59.000 --> 00:26:08.000 
That means that Sgi and others could start building. You know, different implementations of 
this architecture and people. 
 
00:26:08.000 --> 00:26:19.000 
Just, I think, don't realize sometimes, when these ideas catch on in little suburbs of computer 
science, what an impact they can have this Essentially, let people start building. 
 



00:26:19.000 --> 00:26:28.000 
Many different types of graphics systems, including eventually in 1,999. 
 
00:26:28.000 --> 00:26:32.000 
A couple years later Nvidia puts a complete graphics pipeline on a chip. 
 
00:26:32.000 --> 00:26:38.000 
So so that's a sort of a milestone so and they can turn. 
 
00:26:38.000 --> 00:26:44.000 
They came up with a term gpu when they built this thing, Because, they said, Now we have a 
single chip as a compute graphics pipeline. 
 
00:26:44.000 --> 00:26:53.000 
By the way, that's an isa that can be evolved forward that can get better and better with new 
generations just like at X 86 can get better and better. 
 
00:26:53.000 --> 00:27:03.000 
And and now it's sort of a standalone thing right. Looks like when you had it, you know, 
Eventually you could put a process around a single check right and to put a prosper on a single 
chip. you know then, that sort of set things moving right 
 
00:27:03.000 --> 00:27:10.000 
So now you had a single chip graphic system, single chip, cpu, gpu, cpu, and so on. 
 
00:27:10.000 --> 00:27:16.000 
So. by the way, most people, you know, if you were to ask anybody outside anywhere they 
would not know. 
 
00:27:16.000 --> 00:27:20.000 
This is going up. ask a graphic I mean an architect at this time, you know. 
 
00:27:20.000 --> 00:27:23.000 
This is just weirdness going on on the side, you know. 
 
00:27:23.000 --> 00:27:32.000 
But it was pretty significant. So so this was happening right when I got that research 
infrastructure guy. 
 
00:27:32.000 --> 00:27:38.000 
But I basically had another grant from Darpa, which was basically I could just. 
 
00:27:38.000 --> 00:27:42.000 
And this was for my ground. I recently said we should try to run these real-time chasingly. 



 
00:27:42.000 --> 00:27:45.000 
We should link shame on which is run in real time. 
 
00:27:45.000 --> 00:27:50.000 
On these chips and and you know in general a lot of technology. 
 
00:27:50.000 --> 00:27:54.000 
It's not that hard to forecast the future if you have this one particular thing. 
 
00:27:54.000 --> 00:28:02.000 
You have some batch-oriented process going on, forging a head, developing new algorithms 
and capabilities. 
 
00:28:02.000 --> 00:28:12.000 
And then you have this need to go to real time and Then you just sort of There's some leg 
between the 2 as the computer power catches up. 
 
00:28:12.000 --> 00:28:20.000 
And so you can sort of say, you know, we sort of know this is a way to do it, and and mill, and 
then you implement it. 
 
00:28:20.000 --> 00:28:28.000 
Now we were lucky in graphics so that was like a 10 year leg period like that's going on in ai 
right now, but it's by like a 6 month long period, or something like that right? 
 
00:28:28.000 --> 00:28:31.000 
So I mean you can't forecast it and really think it through. 
 
00:28:31.000 --> 00:28:38.000 
But we could. We could do that here So that sort of setup. 
 
00:28:38.000 --> 00:28:51.000 
Yeah, I'm giving you the service historical thing by the way, the reason I put together this talk 
from a historical perspective was because I read John Solston Sydney Brennan's and all these 
Nobel 
 
00:28:51.000 --> 00:28:55.000 
lectures, and I also wrote up on Saturian lectures. 
 
00:28:55.000 --> 00:29:08.000 
There was really something quite striking about them the nobel lectures are all Here's what I 
did Here's how I discovered the electron, you know Here's how I figured out program cell death 
you know Here's 



 
00:29:08.000 --> 00:29:14.000 
what I did the Turing lectures are all over the place they're like essays on things you know what 
I mean. 
 
00:29:14.000 --> 00:29:19.000 
So I decided to go back to my roots in some sense, and just sort of tell you what I did. so. 
 
00:29:20.000 --> 00:29:27.000 
Anyway. This was a really interesting period of time. Yeah, no the time scales here. These are 
just long enough time scales. 
 
00:29:27.000 --> 00:29:33.000 
They're not like paper projects you know it's not one paper right? 
 
00:29:33.000 --> 00:29:39.000 
This is like one or 2 PHD. Thesis 5, 6, 10 years right, and where you keep working on it until you 
get it to work, you know. 
 
00:29:39.000 --> 00:29:43.000 
So anyways, this is sort of how we got to real time chain language. 
 
00:29:43.000 --> 00:29:51.000 
So spi has We've been called the past Okay, Then we built a Stanford real-time shading 
language and kick color. 
 
00:29:51.000 --> 00:29:56.000 
Kaufman Bill Mark, or the main 2 on that. 
 
00:29:56.000 --> 00:30:00.000 
And then we transferred that technology to Nvidia. Phil. 
 
00:30:00.000 --> 00:30:09.000 
Mark went in and did, and then Curb. Akley most part. I don't know mentioned him for that 
minute, and they came up with this Tg. 
 
00:30:09.000 --> 00:30:19.000 
System which became H. Lsl, Mg. and that was sort of the first real time implementation of a 
Savior language on the Gpu. 
 
00:30:19.000 --> 00:30:24.000 
So I think this might be a little bit too much detail for this audience. 
 
00:30:24.000 --> 00:30:31.000 



But if he can give me some feedback, maybe but or ask questions. I'm going to go over this sort 
quickly. 
 
00:30:31.000 --> 00:30:38.000 
But there were a couple interesting points here for the architect types in the audience like 
Margaret. Yeah. 
 
00:30:38.000 --> 00:30:45.000 
So the first thing is that the way they first people first thought of doing this was what we call 
multi-pass algorithms. 
 
00:30:45.000 --> 00:30:51.000 
If you wanted to do a complicated image of a bowling pin, you would draw in multiple passes. 
 
00:30:51.000 --> 00:31:01.000 
So you draw the bowling pin like 6 times and every time you draw the bowling pen. you would 
apply like a texture to it or some function to it. 
 
00:31:01.000 --> 00:31:05.000 
Okay, so it's like like over is like sort of a pilot decount or something. 
 
00:31:05.000 --> 00:31:14.000 
So you go over it, you over what you draw. This is on the base tensioner, and then eventually 
you add in wisdom, shaving, and so on. 
 
00:31:14.000 --> 00:31:19.000 
But you start, you know, wanting multiple countries to keep on it over and over, and 
accumulating the result. 
 
00:31:19.000 --> 00:31:32.000 
And what you think of is opengl is a big parallel computer where you have the frame buffer 
which access the accumulator, and you send these passes down there, which are like one 
instruction. 
 
00:31:32.000 --> 00:31:36.000 
And then, you know, you have access to the texture T, and the color of the fragment. 
 
00:31:36.000 --> 00:31:39.000 
You have some operation that combines and accumulate framework. 
 
00:31:39.000 --> 00:31:45.000 
Then you're generating, and you can also copy the frame buffer the texture. 
 
00:31:45.000 --> 00:31:51.000 



So it can be used anyway that's the first way people thought of doing this. 
 
00:31:51.000 --> 00:32:02.000 
And the second way that people thought of doing it. was what we were advocating was, you 
took the open gel graphics pipeline. If you just consider programmable stages. 
 
00:32:02.000 --> 00:32:13.000 
So he said, i'm going to put a little program in this state, going to sit in between the fragments 
coming on the raspberry pi or the combined framework, and it's going to have access to 
textures and 
 
00:32:13.000 --> 00:32:19.000 
registered that it can run that's a sort of original word Shader. 
 
00:32:19.000 --> 00:32:34.000 
You're just gonna drop in a little program here and you know the the second way turned out to 
be a lot better than the first way, and and that's because the first way was sort of like operating 
on vectors like vector like 
 
00:32:34.000 --> 00:32:41.000 
and ducking out there. I think it's coming But you know you take a vector and you sum them up 
or multiply them. 
 
00:32:41.000 --> 00:32:52.000 
And the problem with that is you like, Read 2 flows to one operation and write one float, and 
you just use a lot of bandwidth and very little computer. 
 
00:32:52.000 --> 00:32:57.000 
And it turns out these vectors can't be cashed because they're like whole images. 
 
00:32:57.000 --> 00:33:01.000 
So they won't fit in so it says computers increasing much faster than the memory bandwidth. 
 
00:33:01.000 --> 00:33:15.000 
And so vector our functions are used in our town and at least By the way, we've measured gpus 
at the time, and you could do about 12 floats in operations for every float. 
 
00:33:15.000 --> 00:33:29.000 
You read. I mean this was been years ago. so you just can't do that much memory bandwidth 
practically, And, by the way, Dpu spend a lot of money on memory bed compared to Rome, so 
the other way. 
 
00:33:29.000 --> 00:33:33.000 
To do. It is Bill Dalley and I came up with this term because we were trying to explain to people. 



 
00:33:33.000 --> 00:33:36.000 
We called it arithmetic intensity. You just want to organize your computation. 
 
00:33:36.000 --> 00:33:43.000 
So you do as money operations as possible for a number of bytes, and we were assuming you 
were like streaming these damage. 
 
00:33:43.000 --> 00:33:54.000 
You work for me like the program and randomly send a little packet program over it. That 
program should do a lot of computers that should right now. 
 
00:33:54.000 --> 00:33:58.000 
And and so you know that that we called the you know. 
 
00:33:58.000 --> 00:34:05.000 
Just change this a little bit. Call this function F, and make F really big and fat, and then you had 
way of doing it. 
 
00:34:05.000 --> 00:34:09.000 
And so it what our paper on the Rtsl and the Cg. 
 
00:34:09.000 --> 00:34:21.000 
System was basically trying to do that was trying to not do this multi-pass stuff to break out of 
that vector thinking and do this more stream oriented thing. Okay, anyway. 
 
00:34:21.000 --> 00:34:30.000 
So that i'm just sort of getting i'm sorry just telling you what the thought process was on these 
things because it that in any of the papers really you know. 
 
00:34:30.000 --> 00:34:38.000 
But we were very aware of these things at this time. I was working with Bill Dalley, who want to 
now, you know, works at it. 
 
00:34:38.000 --> 00:34:42.000 
I mean that, Nvidia. We worked this and this together. 
 
00:34:42.000 --> 00:34:46.000 
Okay, So there was one more step and then i'll be finished. 
 
00:34:46.000 --> 00:34:54.000 
Okay, General: purpose, Gpu So well, okay. 
 
00:34:54.000 --> 00:35:03.000 



So this shows you your age, I guess. But when I was in school, you know, I showed you we had 
these parallel computers all over the place when I was in school. 
 
00:35:03.000 --> 00:35:07.000 
It was a hot thing, pyramidal image processing. 
 
00:35:07.000 --> 00:35:13.000 
The connection machine was around at that time. you know there's all this, you know, parallel 
computer. 
 
00:35:13.000 --> 00:35:18.000 
I learned all the way back, you know, from the 60 s like Batchers, you know. 
 
00:35:18.000 --> 00:35:24.000 
Parallel sort, you know, attending source so I mean it wasn't like parallel computing was, like 
you know, some new idea. 
 
00:35:24.000 --> 00:35:32.000 
It was like goes back to the birth of computing but you know it's sort of one of these ideas that 
sort of gets lost like a lot of ideas. 
 
00:35:32.000 --> 00:35:41.000 
But being old enough, said, Well, why don't instead of sort of piece moving these CD programs 
together to do various things? 
 
00:35:41.000 --> 00:35:44.000 
Why don't we just try to make the gpu into general purpose? 
 
00:35:44.000 --> 00:35:52.000 
Parallel computer that a problem computer, And so you know, and this was a a few years 
where we tried to do this. 
 
00:35:52.000 --> 00:35:57.000 
So it was pretty obvious from day one if you draw a triangle and run a shade run all the 
triangles. 
 
00:35:57.000 --> 00:36:00.000 
That's a little bit like the map if you know you know map from functional programming. 
 
00:36:00.000 --> 00:36:07.000 
You know, you map a function over a collection, and we could do that by running a shader. 
 
00:36:07.000 --> 00:36:11.000 
Okay, Another thing we could do really easily was remove items from the collection. 



 
00:36:11.000 --> 00:36:15.000 
So. so I guess the lesson from data parallel programming was. 
 
00:36:15.000 --> 00:36:22.000 
There were a small number of well-known primitives, and if you implemented the small number 
of wildlife parameters, you appeal. 
 
00:36:22.000 --> 00:36:28.000 
It already forged to head and implement in many, many algorithms, fluid, flow, molecular 
dynamics. 
 
00:36:28.000 --> 00:36:30.000 
And this was all well trotting territory, you know. 
 
00:36:30.000 --> 00:36:35.000 
People running them on praise, connection machines, other parallel computers. 
 
00:36:35.000 --> 00:36:47.000 
So if you could implement these small number of algorithms or higher level primitives, then 
you'd get to the point where all this knowledge that we already had would just sort of become 
usable. 
 
00:36:47.000 --> 00:36:58.000 
Ok. so a tricky one was, was gather So you have a collection of memory addresses like an array 
of address, and you want to load in all the values at those different arrays. 
 
00:36:58.000 --> 00:37:02.000 
That's very common in these programs. So we could sort of Do that with texture lookup. 
 
00:37:02.000 --> 00:37:10.000 
If you think of the texture as memory if you said you know access one of the elements of the 
texture that's like doing a load right? 
 
00:37:10.000 --> 00:37:19.000 
So we sort of had that. But I want to say something about that, because this is the key thing 
that made Gpus useful, and that is okay. 
 
00:37:19.000 --> 00:37:35.000 
So if you look at this, so here here was an example of a little shader, and this was the shader 
that people would benchmark their gpus again. there'd be one texture load and about 5 other 
instructions 
 
00:37:35.000 --> 00:37:39.000 



so it'd be like if you had a normal processor and you every fifth instruction. 
 
00:37:39.000 --> 00:37:46.000 
You would do a load from a random memory address. So you have learned in a little penny 
program does very little stuff there. 
 
00:37:46.000 --> 00:37:50.000 
3 5 instructions, but loads from a random memory it doesn't hit the catch. 
 
00:37:50.000 --> 00:37:55.000 
Those from random variable. Well, that tends to. I see markets are to squirm a little bit. 
 
00:37:55.000 --> 00:38:00.000 
Okay, that makes people nervous because you know that just doesn't work. 
 
00:38:00.000 --> 00:38:10.000 
Very well. Okay. So So short in the loop texture reads from randomly doesn't cash full time for a 
locality that's like the nightmare program from an architect's point of view that's the program 
 
00:38:10.000 --> 00:38:18.000 
we had to get to run on a gpu. So so how did they solve that? 
 
00:38:18.000 --> 00:38:20.000 
I wrote a bunch of papers on this how to solve this actually. 
 
00:38:20.000 --> 00:38:35.000 
So what you did at the time was you had the raspberry pi you would output on these 
fragments, and they put it in a fifo, and then the blues that send out to the texture memory the 
address that it wanted 
 
00:38:35.000 --> 00:38:39.000 
to access, and that, you know, pathway to memory and back. 
 
00:38:39.000 --> 00:38:44.000 
It takes a lot of time. You just keep rendering fragments as it does that. 
 
00:38:44.000 --> 00:38:55.000 
And then eventually this this thing comes out of the python and you make this Bible large 
enough so that has time to do a picture of the fetch. and then the data comes back and you 
words in it. 
 
00:38:55.000 --> 00:38:59.000 
That's how it works. you know you had to put in this big firefoot Here. 
 



00:38:59.000 --> 00:39:06.000 
But yeah, it was perfectly easy to do in a gpu and that's all the gpus work. 
 
00:39:06.000 --> 00:39:14.000 
So that's interesting. So anyway, that evolved in a gpu multi-threading. 
 
00:39:14.000 --> 00:39:21.000 
So the way modern computers work is that they have a bunch of fragments being processed 
like 30. 
 
00:39:21.000 --> 00:39:25.000 
They do the final instruction program. they do the texture load. 
 
00:39:25.000 --> 00:39:37.000 
They really stop that threat done for the next one. Meanwhile, that that texture, memory, 
access has been processed, and then they just keep doing that. 
 
00:39:37.000 --> 00:39:41.000 
And this is called multi-threading. there are lots of machines built like this. 
 
00:39:41.000 --> 00:39:50.000 
But we just just assume you're going to Miss is the soon you're gonna miss the tent look at it. 
Who you're doing this just really junk the next time. 
 
00:39:50.000 --> 00:39:55.000 
And then finally, after you have enough spreads, run this case at least 48 threats. 
 
00:39:55.000 --> 00:40:09.000 
So there's a lot of these then you come back and start funny, and you know the downside of 
this is that you know each of these threats can't have a lot of state because you have to have 40 
sets of registers 
 
00:40:09.000 --> 00:40:13.000 
or whatever, in order to have all these threats, which is a real pain. 
 
00:40:13.000 --> 00:40:20.000 
Now these things have to happen really small programs very little state but that's how they 
solve the problem. 
 
00:40:20.000 --> 00:40:26.000 
But that's what ended up happening and so then what happened is around this time. 
 
00:40:26.000 --> 00:40:32.000 
Gpus became multicorecindy, multi-threaded machines. 



 
00:40:32.000 --> 00:40:39.000 
So basically, you know, at the time, and by the way I was at safer. We had one architect that did 
one of these things. 
 
00:40:39.000 --> 00:40:43.000 
Another architect that did another one actually we didn't have a multi-threaded guy. 
 
00:40:43.000 --> 00:40:47.000 
Okay, we definitely had a multi-core guy. We definitely had the Simd black, and they they were 
like in different world. 
 
00:40:47.000 --> 00:41:01.000 
Now here's how we built this right totally different world and they went. And I would say, Well, 
let's say we should do all these things because we need everything we can get okay, and that's 
what they did And that just shows you how crazy 
 
00:41:01.000 --> 00:41:08.000 
graphics people, and just because we needed we needed those cycles. 
 
00:41:08.000 --> 00:41:20.000 
We could not. We were not going to give up a factor of 20, or something, if we, if it was just a 
matter of paralyzing our program more, we wanted the power. 
 
00:41:20.000 --> 00:41:28.000 
We were willing to you know. Do extreme stuff. So anyway. Then that sort of evolved in what 
we think of as the modern. 
 
00:41:28.000 --> 00:41:36.000 
There's one more step in that. which was It started out that these shaders there were multiple 
different kinds of shaders for different parts of the graphics pipeline. 
 
00:41:36.000 --> 00:41:45.000 
They came up with this idea of a unified changer, where all of them would execute the same 
instruction, set and run on the same hardware. 
 
00:41:45.000 --> 00:41:49.000 
In that case came out with Nvidia G. Force 8 anyway. 
 
00:41:49.000 --> 00:41:53.000 
So this is, you know. So you have 2 levels of parallelism here. One is. 
 
00:41:53.000 --> 00:41:57.000 
You have number of cores as a number of student, etc. 



 
00:41:57.000 --> 00:42:05.000 
But then you have that times a number of threads before, and that gives you the friends 
 
00:42:05.000 --> 00:42:12.000 
So but anyways, you know, then things were pretty much golden, I mean. 
 
00:42:12.000 --> 00:42:22.000 
So this this gather I mentioned the gather thing because I think that's why Gpus became so 
ubiquitous. 
 
00:42:22.000 --> 00:42:32.000 
Is, they had that gather. There were lots of computers like Dsps, and a lot of these deep 
learning things that don't have this random fact for memory in the middle of their inner loop, 
and they're going to be 
 
00:42:32.000 --> 00:42:46.000 
restricted in the programs they can walk. So they thought the scatter thing, This texture 
mapping sort of put gpus a bit of a sweet spot, and enabled them to run a lot more things than 
other types of machines So 
 
00:42:46.000 --> 00:42:51.000 
anyways, to complete the full, you know Set, you also need a scatter. 
 
00:42:51.000 --> 00:42:57.000 
Let them talk about that. You need some way of doing a reduction scan or fold. 
 
00:42:57.000 --> 00:42:59.000 
I'm not going to talk with that but it's fairly easy. 
 
00:42:59.000 --> 00:43:13.000 
We kept working on this, and others kept working on it and pretty soon. Bingo. Okay, And then 
2,004 paper with Pian bug, you know a book for Gpu's Dream to put it on bathley's 
 
00:43:13.000 --> 00:43:20.000 
hardware where we basically say, well, we can build a data parallel virtual machine on top of all 
these graphics primitives. 
 
00:43:20.000 --> 00:43:27.000 
Now you can program this thing as a computational scientist or an Ai researcher don't have to 
know anything about graphics. 
 
00:43:27.000 --> 00:43:39.000 



And then, and video hired. i'm dealing with finish this thesis, and we're done. John Nicholas was 
the hard work team leader. 
 
00:43:39.000 --> 00:43:53.000 
So So you know they're they're sort of this fairly obvious progression of ideas here. you know 
none of them knew, like none of my work has ever involved any new ideas as I like to say, none 
of them. 
 
00:43:53.000 --> 00:44:00.000 
Knew, just taking old ideas mostly, and not getting rid of them, or prematurely, you know. 
Sometimes they just sit around in the back of your mind for many, many years. 
 
00:44:00.000 --> 00:44:05.000 
You keep working on it, You know. I always knew we needed more computing power. 
 
00:44:05.000 --> 00:44:10.000 
Just keep working on it. Okay, How much time do I have? 
 
00:44:10.000 --> 00:44:17.000 
And how much? Oh, okay. So I can spend a couple more minutes. 
 
00:44:17.000 --> 00:44:21.000 
I guess i've been talking about so Ok. no interruptions either. Ok. 
 
00:44:21.000 --> 00:44:24.000 
So maybe just 2 implications of this and then i'm done. 
 
00:44:24.000 --> 00:44:28.000 
Okay, So and you know then, you've probably seen talks about this. 
 
00:44:28.000 --> 00:44:41.000 
But I think it's so i'm a huge fan of domain specific languages, huge fan of them most computer 
scientists and lost software engineers are not a fan of them i'm somewhat surprised So that's 
Why, I'm: going to 
 
00:44:41.000 --> 00:44:46.000 
pitch them a little bit here. but so here's gonna give me an example. 
 
00:44:46.000 --> 00:44:49.000 
So here, I said. I described opengl to you before. 
 
00:44:49.000 --> 00:44:52.000 
Let me tell you what it looks like. from reporters point in view. 
 



00:44:52.000 --> 00:45:00.000 
You write these little programs, these C programs, and I love to program in open geology, And I 
love to make pictures with computers and write programs like this. 
 
00:45:00.000 --> 00:45:05.000 
So it makes me happy. Just look at that code. Okay, But you know you set up a camera. 
 
00:45:05.000 --> 00:45:13.000 
You draw a bunch of triangles and you swap buffers, or complete your image. it's so obvious 
what this does right. 
 
00:45:13.000 --> 00:45:19.000 
It's pretty easy to learn pretty clean syntax and so on. 
 
00:45:19.000 --> 00:45:22.000 
But it's really like a language even I mean it looks like just a bunch. 
 
00:45:22.000 --> 00:45:30.000 
It looks like a normal Api. but it's really like a language it has like a grammar to it, like you have 
to do things in certain orders, right? 
 
00:45:30.000 --> 00:45:37.000 
I mean you have like. If you want to draw the final, you have to say again 12 vertices, and then 
n, and then make the flow under our vertex. 
 
00:45:37.000 --> 00:45:44.000 
Keep it on 1 one vertices you get to call this have a normal color. I mean, there's there's an 
order to it makes sense. 
 
00:45:44.000 --> 00:45:48.000 
I mean it's a grammar to it and if you don't obey the grammar. 
 
00:45:48.000 --> 00:45:51.000 
There's a parser and it and it crashes your machine. 
 
00:45:51.000 --> 00:45:58.000 
You're sending it This thing and it says that's not a legal open jail program, and it gives you an 
exception. 
 
00:45:58.000 --> 00:46:02.000 
So it has this language like thing, even though it's embedded in C. 
 
00:46:02.000 --> 00:46:06.000 
So I will call that a Dsl embedded in C, as function calls. 



 
00:46:06.000 --> 00:46:20.000 
So a lot of libraries are just dsl really because they have some syntax, and they have some 
grapper, and and they have some semantics synthesis with a grammar and semantics, so that's 
 
00:46:20.000 --> 00:46:23.000 
sort of obvious. but people tend to think oh, that's not a Dsl. 
 
00:46:23.000 --> 00:46:30.000 
But it is a Dsl: Okay, I mean it has grammar and a smith that's what i'll call lady 
 
00:46:30.000 --> 00:46:33.000 
Okay, and why is this Such a good idea it's easy to use. 
 
00:46:33.000 --> 00:46:40.000 
It runs on all these different machines, and it runs really fast. 
 
00:46:40.000 --> 00:46:50.000 
All sounds good, but the thing about it in graphics is because we were implementing this really 
high, level, opengl architecture. 
 
00:46:50.000 --> 00:46:55.000 
It encouraged incredible amount of innovation. So what was happening? 
 
00:46:55.000 --> 00:47:01.000 
I think, around that time in in cpus, as they were sort of getting stuck, running c. 
 
00:47:01.000 --> 00:47:11.000 
Programs. they couldn't really figure out a path forward to parallelism, and also if they tried 
one form of parallelism, then you have to rewrite your C programs in one way. 
 
00:47:11.000 --> 00:47:20.000 
If you had tried another form parallelism, you have to rewrite your C program in another way, 
and and that was really difficult to convince people to do with using opengl. 
 
00:47:20.000 --> 00:47:36.000 
There could be different parallel machines underneath the hood, and it was up to the vendor to 
implement the the system, and once they implemented it, the opengl programs as well. And so 
during this period of time the gpus just kept 
 
00:47:36.000 --> 00:47:40.000 
changing radically, radically. But all your open jail programs just kept running. 
 
00:47:40.000 --> 00:47:52.000 



It's still easy to use really performant and so on so I think that would not have happened 
without opengl Cuda, and i'll say this a little bit. having been part of starting. 
 
00:47:52.000 --> 00:48:04.000 
It is a bit of a step backwards. Now we've actually come up with this fairly precisely defined 
data parallel machine, which you know is hard to use. 
 
00:48:04.000 --> 00:48:10.000 
You know, writing coter programs is very difficult for most people. just too much computer 
science. 
 
00:48:10.000 --> 00:48:21.000 
Now you need to know too much architectural knowledge and so in some sense we've 
regressed a little bit. I mean we we've raised the bar for performance, but we haven't kept the 
usability in place We made it very 
 
00:48:21.000 --> 00:48:27.000 
difficult rights program. So I believe even now, and a lot of my work recently has been building 
Dsl. 
 
00:48:27.000 --> 00:48:32.000 
Serve on top of Cuda that try to make this much more easier to use for people. 
 
00:48:32.000 --> 00:48:41.000 
And you know you can see this in Ai with things like pie torch, and so on, where they built ai 
libraries on top of Kuda that led them doing the on earth. 
 
00:48:41.000 --> 00:48:50.000 
So i'm a big fan of that and Then the same thing domain specific architectures by this domain 
specific thing. 
 
00:48:50.000 --> 00:48:54.000 
Maybe that's also a little bit my biology training you know in biology. 
 
00:48:54.000 --> 00:48:58.000 
Biologists have an appreciation for the diversity of the world. 
 
00:48:58.000 --> 00:49:01.000 
They don't like monocultural world They don't like a world just full of flies. 
 
00:49:01.000 --> 00:49:09.000 
Would be a pretty borough boring word, so if we only have one architecture, one kind of 
computer to a biologist. That would be pretty boring, you know. 
 



00:49:09.000 --> 00:49:15.000 
You you imagine we'd have like an ecosystem of kinds of computing devices all evolved for 
specialized. 
 
00:49:15.000 --> 00:49:23.000 
That's what I would call domain specific or evolved or specialized fit, if you like that term fit for 
the task. 
 
00:49:23.000 --> 00:49:28.000 
But anyway, this is a big thing nowadays because of this end of Moore's law, right, which you all 
know about. 
 
00:49:31.000 --> 00:49:32.000 
I'm not going to get into it too much but if you know if you look at I don't know. 
 
00:49:32.000 --> 00:49:41.000 
Have they come and spoke here. I don't know but they've given this talk a bunch of times 
recently, but they think that the end of Mall's law is actually a golden age of computer 
architecture. 
 
00:49:41.000 --> 00:49:49.000 
And it back to biology. analogy. was this thing in biology called the Cambridge Explosion, where 
you suddenly get all these new life forms. 
 
00:49:49.000 --> 00:49:57.000 
That's what I think when when I read this title is we're being forced to actually come 
experiment with different architectures, different ways of doing things. Okay? 
 
00:49:57.000 --> 00:50:04.000 
And so they think domain specific software and hardware. is the way to get more computer 
performance in an era. 
 
00:50:04.000 --> 00:50:12.000 
When Moore's law is forcing computers to sort of not increase exponentially in performance, 
So you know. 
 
00:50:12.000 --> 00:50:17.000 
And this is all obvious, I guess. but you know I did. 
 
00:50:17.000 --> 00:50:24.000 
I spend both time with apple these days helping them they're really in hardware softwareical 
design. But you know this is their latest M. 
 
00:50:24.000 --> 00:50:31.000 



One ship. there's men, i'm not going to tell you everything that's in the city like 30 different 
specialized processors in this chip. 
 
00:50:31.000 --> 00:50:36.000 
One thing I will tell you about just the center notice that Gpu in the center. 
 
00:50:36.000 --> 00:50:44.000 
It's way bigger than the cpu and Now it knows who's right? Next to the memory system the Gpu 
and the Cpu is is not a computer. 
 
00:50:44.000 --> 00:50:52.000 
It's it's a you know user interface engine basically. So so all the heavy confusion is being done 
by the Gp. 
 
00:50:52.000 --> 00:50:56.000 
And, in fact, I think this will eventually evolve into even more they'll have 2. 
 
00:50:57.000 --> 00:51:01.000 
So general things. The Cpu are the cpu but i'll say the core Tp. 
 
00:51:01.000 --> 00:51:05.000 
You call that a compute engine, All that data parallel computer. 
 
00:51:05.000 --> 00:51:20.000 
So you have a Cp sequential computer signed one single side programs past the puzzle gpu, 
which is fine, that a parallel program is responsible. Then Also, a bunch of specialized things for 
when things are kept month even the 
 
00:51:20.000 --> 00:51:31.000 
Tpu, like decoders of security, protocols, encryption or speech Recognition, G. P. 
 
00:51:31.000 --> 00:51:38.000 
T 3 anyways. So yeah, So that's definitely the trend and everybody knows that. 
 
00:51:38.000 --> 00:51:44.000 
But so, anyways, that's just domain-specific things are going to be more important in the future. 
 
00:51:44.000 --> 00:51:57.000 
In computing male I'll just end with that I mean specialization will become much more 
continent computer scientists. I that I talked to about this through many years. 
 
00:51:57.000 --> 00:52:06.000 
Don't like this idea they like general purpose they like the fact, there's one way to do things 
there's one language. 



 
00:52:06.000 --> 00:52:13.000 
There's one X one operating system this one you know there's one model of computation, one 
model of computation Turing machine. 
 
00:52:13.000 --> 00:52:19.000 
That's our model of competition so you know that people don't like that. 
 
00:52:19.000 --> 00:52:27.000 
It doesn't bother me at all but you know people and we don't want to be more specialized. 
 
00:52:27.000 --> 00:52:32.000 
We want to be is as general as as general as possible, not to general. 
 
00:52:32.000 --> 00:52:38.000 
And anyway, and then you know i'll just mention 2 other things I said it. 
 
00:52:38.000 --> 00:52:48.000 
I think what I learned from my advisors were the choose challenging problems and to use 
appropriate methodology, or to use appropriate techniques. 
 
00:52:48.000 --> 00:52:57.000 
And so, you know, I was very fortunate to just her stumbled into this Lucas film thing where 
they wanted to make these 4 realistic images, and we had to do it efficiently. 
 
00:52:57.000 --> 00:53:02.000 
I mean, it took me 30 years to probably figure out how to do it. 
 
00:53:02.000 --> 00:53:09.000 
Now we can run these things in real time. I mean many other people, thousands, tens of 
thousands of people working on it besides me. 
 
00:53:09.000 --> 00:53:17.000 
Obviously, but you know, if you pick a long-term challenging problem, it, it will lead to you 
know good research. I believe so. 
 
00:53:17.000 --> 00:53:23.000 
I hope you keep supporting that The world and then it does take a certain amount of taste. 
 
00:53:23.000 --> 00:53:31.000 
I don't know how I got it I maybe I don't really think it get plotted by conventional computer 
science curriculum. 
 
00:53:31.000 --> 00:53:34.000 



But you know there were 2 things I latched onto very early. 
 
00:53:34.000 --> 00:53:41.000 
I shall do that first type. Report was language while called language oriented Api's things that 
have a well-defined semantics. 
 
00:53:41.000 --> 00:53:49.000 
For example, a lot of people in computer science says, just come up with these ad hoc 
implemented like they did sort of bad at being precise about their abstractions. 
 
00:53:49.000 --> 00:53:55.000 
It just bothers me a lot of I like these language ideas like, Hey, category theory, abstract 
algebra. 
 
00:53:55.000 --> 00:53:59.000 
You want to get me excited. Talk about stuff like that, and then make it a language. 
 
00:53:59.000 --> 00:54:02.000 
And then, you know, parallel architectures I mean the world is kept parallel. 
 
00:54:02.000 --> 00:54:06.000 
I knew that I knew the brain was parallel I was telling you about it. 
 
00:54:06.000 --> 00:54:11.000 
It wasn't like sequential. I mean maybe I would discuss consciousness with my friends, or 
whatever. 
 
00:54:11.000 --> 00:54:23.000 
But you know we knew the brain was problem. Okay, and I just knew all along there would be 
many laser into an El Arctic, and I just knew that's the way the world worked and so a lot of 
people didn't want to deal 
 
00:54:23.000 --> 00:54:27.000 
with them. That was a cool faction. So you know, you got a latch onto these really correct 
abstractions. 
 
00:54:27.000 --> 00:54:33.000 
They might not always be trendy but so with that i'll end. 
 
00:54:33.000 --> 00:54:43.000 
We'd love to take questions thank you very much so you someday collaborators. 
 
00:54:43.000 --> 00:54:48.000 
I'm sure there's some provocative thoughts in there. So hopefully, all right. 



 
00:54:48.000 --> 00:54:59.000 
So people who are online feel free to type your questions into the chat, and I will speak them 
out for you. and people who are in the room feel free to use this microphone as Margaret is 
about to demonstrate Thank you So 
 
00:54:59.000 --> 00:55:03.000 
much. It was wonderful to hear the whole history, and the whole retrospective. 
 
00:55:03.000 --> 00:55:16.000 
That was great. So my question is both as an architect and also as the leader of the size director 
at here at Nsf. 
 
00:55:16.000 --> 00:55:21.000 
You know you've succeeded by mixing different topic areas to do what you needed to do right. 
 
00:55:21.000 --> 00:55:33.000 
You didn't say i'm a programming languages person, or i'm an architect or i'm a graphics 
person, you said I want to do photorealistic rendering Yeah, what do I need and So i'm 
 
00:55:33.000 --> 00:55:39.000 
curious. What should we do at Nsf to cultivate that style of research? 
 
00:55:39.000 --> 00:55:44.000 
So what are the programs we should be offering and out in the rest of the world? 
 
00:55:44.000 --> 00:55:51.000 
What should we do to change? How conference communities work in order to cultivate that as 
well? 
 
00:55:51.000 --> 00:55:54.000 
I love that question, and and i'm glad you pulled that out of my dog. 
 
00:55:54.000 --> 00:55:59.000 
I actually think I am a fairly problem driven person in general, even though I started out being in 
science. 
 
00:55:59.000 --> 00:56:04.000 
Even then I think the scientific problems I will. When there were problems, You know they were 
mysteries. 
 
00:56:04.000 --> 00:56:10.000 
They were things we wanted to figure out, and we would figure it out, you know, and that 
started with me at least in physics. 



 
00:56:10.000 --> 00:56:13.000 
I mean, I remember, I think modern physics like you know. 
 
00:56:13.000 --> 00:56:23.000 
What is there an atom and what's an atom and you know, like Neil's bore and people like that? 
i'd say weren't like my Hero? So they were sort of they were faced with the reality of the 
 
00:56:23.000 --> 00:56:27.000 
world, and they're trying to explain it it was very I consider that someone problem. 
 
00:56:27.000 --> 00:56:31.000 
It just didn't know some math and say i'm going to apply my math at general relatively. 
 
00:56:31.000 --> 00:56:34.000 
They said, what's the nature of space and time so I'm. 
 
00:56:34.000 --> 00:56:40.000 
A fan of problem-driven research. I think and I think you know part of it's practical. 
 
00:56:40.000 --> 00:56:52.000 
I'm just a practical person i've started companies as Well, you know, I'm just very driven by 
making an impact in that process, so that might just be a personality thing I don't know not 
everybody's like that I know lots of 
 
00:56:52.000 --> 00:57:04.000 
people that aren't like that. and I feel very humble when I meet them, because I think they do 
very pure research, and i'm very practical, you know I do think there's a merit to it, because it 
keeps you honest and 
 
00:57:04.000 --> 00:57:07.000 
keeps you moving forward, you know. I mean you know you can. 
 
00:57:07.000 --> 00:57:12.000 
If you work on too specialize of a thing, you can sort of get stuck in your own little world, right? 
 
00:57:12.000 --> 00:57:22.000 
Whereas if you're trying to solve a problem you're either solving it, or you, I mean the rubber 
meets the road somewhere, you're either making progress or you are like if we didn't like 
continue to make progress on 
 
00:57:22.000 --> 00:57:26.000 
making movies, you know, we would have petered out, and we were in mortal fear. 
 



00:57:26.000 --> 00:57:33.000 
We would peter out at any given time, because if you know the history of Pixar, I mean, see if 
Jobs spent almost all his money on it. 
 
00:57:33.000 --> 00:57:37.000 
And it took. It took a long time like 20 years to make that movie. 
 
00:57:37.000 --> 00:57:41.000 
And so, but we were making progress. We were pretty disciplined about it. 
 
00:57:41.000 --> 00:57:44.000 
We evaluated our progress. So you, you you know. 
 
00:57:44.000 --> 00:57:50.000 
And yeah, we would do whatever it would take so yeah so I don't. 
 
00:57:50.000 --> 00:57:53.000 
I don't know I mean I I do believe that's 
 
00:57:53.000 --> 00:58:07.000 
This is a tough question to answer So i'm going on but I do believe you know fundamental 
things you know are really important to invest in, because if I think of my career, even though 
maybe I am somewhat problem-driven I've been 
 
00:58:07.000 --> 00:58:18.000 
able to cherry pick great ideas from people that have been working at the core, and maybe 
maybe we're so focused on the core that they didn't go imply them to various areas that they 
could've internally in 
 
00:58:18.000 --> 00:58:23.000 
architecture, and in Pl. I used to give talks all the time like. 
 
00:58:23.000 --> 00:58:26.000 
In fact, I gave a talk. Why are Gpu so fast? 
 
00:58:26.000 --> 00:58:40.000 
I think i've given that talk 100 times like 20 years ago, and I was trying to get pl people and 
architecture. people interested in it, and you know, I think they were just so busy working on 
their area that this was just too. 
 
00:58:40.000 --> 00:58:48.000 
You know Maybe that's interesting, Maybe it's not interesting I don't know, you know I I can 
understand why they might not be part of it. 
 



00:58:48.000 --> 00:58:53.000 
So I don't exactly know I mean I just think you need a balance, maybe, is what i'll conclude with. 
 
00:58:53.000 --> 00:59:00.000 
I mean you need to support the core areas. but you want to be You want to solve real problems 
of high impact. 
 
00:59:00.000 --> 00:59:03.000 
I mean if you're not solving any problems of high impact that's the other thing. 
 
00:59:03.000 --> 00:59:08.000 
If you aren't solving any problems of high impact then something's wrong, you know. 
 
00:59:08.000 --> 00:59:13.000 
If you're investing in all the core stuff and you're solving problems of high impact, as spin-offs 
right and left. 
 
00:59:13.000 --> 00:59:19.000 
Then there's nothing to worry about but If you're never solving any problems of any 
importance. 
 
00:59:19.000 --> 00:59:25.000 
I think something's wrong, and so you maybe just have to keep recording that. 
 
00:59:25.000 --> 00:59:29.000 
And yeah, so same, thank you for the question I don't know if I answer it very well. 
 
00:59:29.000 --> 00:59:34.000 
But I appreciate it a lot. Yeah, it's something to think about. thanks for that. 
 
00:59:34.000 --> 00:59:39.000 
So I have a question from the chat. This is from Aruna Kalaru, who says, Thank you, Dr. 
 
00:59:39.000 --> 00:59:46.000 
Hanrahan This is her nukelaro i'm a program director in biology division. 
 
00:59:46.000 --> 00:59:52.000 
I am curious to know how your background in biology influences your thinking and career track. 
 
00:59:52.000 --> 00:59:58.000 
Okay, that's a good question. so yeah I was definitely a hardcore biologist. 
 
00:59:58.000 --> 01:00:11.000 



Well, I was not a very successful biologist so, but my background, my My course work was 
largely in biology and physics, and you know I worked in a wet lab. 
 
01:00:11.000 --> 01:00:23.000 
I tried to make electrodes and stick them. in your hands. and I went to the slaughterhouse and 
picked nematodes out of pigs. and that sense I mean I yeah, I was I was a biologist. Okay, So 
you know so I don't 
 
01:00:23.000 --> 01:00:29.000 
I think the biologists Well, one thing is, it was you when I was in ballology. 
 
01:00:29.000 --> 01:00:32.000 
Theoretical biology was not a big thing. In fact, they hated their neural nets. 
 
01:00:32.000 --> 01:00:36.000 
Actually I had this one advisor who was totally Mr. 
 
01:00:36.000 --> 01:00:41.000 
Neural net, and my other advisor was studying the neurobiology of Inverbrates. 
 
01:00:41.000 --> 01:00:53.000 
He was completely adioned on that and the biologists really didn't like to abstract things like 
that they didn't like a simple model like that, and a website. so I was in the only that time we're 
talking 
 
01:00:53.000 --> 01:01:04.000 
about like in the 80 S. Now, I mean, I think the only theoretical biologist that was respected by 
about just was Francis Crick. 
 
01:01:04.000 --> 01:01:09.000 
And you know I admired him. He came to our lab many times. 
 
01:01:09.000 --> 01:01:17.000 
So it was this gulf between the practical biology which was very grounded in the real world, like 
what do we actually know the experimental side? 
 
01:01:17.000 --> 01:01:25.000 
And this theoretical side. and so I was that I think that tension is really interesting, and I think 
that's changing in biology now. 
 
01:01:25.000 --> 01:01:35.000 
But I think that really influenced my career was that tension between the reality of the real 
world and the biological world and sort of this abstract world. 
 



01:01:35.000 --> 01:01:38.000 
This theoretical physics world and I think that you know that. 
 
01:01:38.000 --> 01:01:41.000 
That's how it influenced me. but I love biology. 
 
01:01:41.000 --> 01:01:47.000 
I still follow it pretty closely. I want to do more biology actually, it's fascinating. 
 
01:01:47.000 --> 01:01:51.000 
Yeah, I like how you said it before in terms of the domain. 
 
01:01:51.000 --> 01:01:57.000 
Specific languages is kind of a biological perspective right to say, why should there be one 
organism that doesn't make any sense? 
 
01:01:57.000 --> 01:02:08.000 
There should be organisms that are adapted to their niches. And that's what a domain specific 
language is. It's adapting the notion of computation to a particular problem that you have at 
hand Yeah, And you know if you 
 
01:02:08.000 --> 01:02:10.000 
make tools. I do a lot of woodworking and stuff like that. 
 
01:02:10.000 --> 01:02:13.000 
You have all these different kinds of saws and chisels and stuff. 
 
01:02:13.000 --> 01:02:16.000 
Yeah, I mean, you want general saws that was almost through anything. 
 
01:02:16.000 --> 01:02:23.000 
But you also want these really specific songs that let you be really efficient for certain tasks, and 
it doesn't bother me at all. 
 
01:02:23.000 --> 01:02:30.000 
It just seems like that's. the way the world is and biology is a good example. So i've always 
that's one that I never have liked about computer science. 
 
01:02:30.000 --> 01:02:38.000 
They just want these really general things and I just don't need it. But there's there's attention 
there the right place. 
 
01:02:38.000 --> 01:02:43.000 



So even you you don't just write a program you write a language which is a more general 
construct. 
 
01:02:43.000 --> 01:02:55.000 
And so you're you're trying to negotiate this tension between being general and being specific. 
and you think in some cases this domain specific language is at a sweet spot where it's yeah, 
you're talking some generality 
 
01:02:55.000 --> 01:02:58.000 
but also specificity to the problem and that's true in Biology, too, right? 
 
01:02:58.000 --> 01:03:01.000 
There are like like i'm reading this book about the crab cycle. 
 
01:03:01.000 --> 01:03:04.000 
Right now. What is Nick Lane or at Nick Lane? 
 
01:03:04.000 --> 01:03:15.000 
Great. i'll recommend his boots, a final question transformer But yeah, there's like the crab 
cycles or or the basic eukaryotic cell architecture or bacteria. 
 
01:03:15.000 --> 01:03:21.000 
Pro ki. So I mean, those things are universal and and general, fairly general. 
 
01:03:21.000 --> 01:03:27.000 
You know the particular organisms are very different so it's not like you don't have some 
generality. 
 
01:03:27.000 --> 01:03:32.000 
You reuse mechanisms, and you want to learn how you know to reuse them. 
 
01:03:32.000 --> 01:03:49.000 
So yeah. So in computer graphics, Now, you talked about a quest for photorealism. one of the 
ways that we're getting codorealism now is to throw away the graphics pipeline and do this 
deep learning stuff. 
 
01:03:49.000 --> 01:03:54.000 
We have at least one question for Galen. Boden asks Hi thanks for the presentation. 
 
01:03:54.000 --> 01:03:57.000 
Any thoughts on opportunities and concerns with emerging deep fake technology. 
 
01:03:57.000 --> 01:04:06.000 



So now that people are able to make these photo realistic images just based on data, what is, 
what do you think about that? 
 
01:04:06.000 --> 01:04:12.000 
I mean is something that yeah, that's that's probably the question when I've been traveling 
around a little bit. 
 
01:04:12.000 --> 01:04:14.000 
That's the topic of the day obviously right dolly and Gpt. 
 
01:04:14.000 --> 01:04:18.000 
Extract, spent the whole morning playing around with Gpd. 
 
01:04:18.000 --> 01:04:35.000 
3. So yeah, I mean well, I think there's 2 questions there. first of all, there's you know, you can 
make deep fakes with conventional graphics technology, just as easily as with this other 
technology. 
 
01:04:35.000 --> 01:04:39.000 
I mean well, I mean, you know there's there's been a lot of work on defects that preceded 
Dolly. 
 
01:04:39.000 --> 01:04:48.000 
You know what I mean, and that was that's very disturbing work, that deep fake work, and 
there was a lot of going on, Stafford, and upset me enormously. 
 
01:04:48.000 --> 01:04:57.000 
I mean so I think part of that is the fake part of it like, I think if there's an intentionality to it to 
fake somebody out to mislead somebody. 
 
01:04:57.000 --> 01:05:04.000 
And so that that was going on and has always been going on in graphics, and some of it's good 
like a movie, you know. 
 
01:05:04.000 --> 01:05:14.000 
Toy story is fake in some sense but it's good. I think we're not come by other ones we get 
Obama to say something he would never say, and people would say that's bad. 
 
01:05:14.000 --> 01:05:18.000 
So you know, the technology can be used to go back if you make it easy to do bad stuff. 
 
01:05:18.000 --> 01:05:24.000 
People will do it. Okay, So that's the first part the Dolly and the Gpt. 3. 
 



01:05:24.000 --> 01:05:32.000 
Yeah, I think that's making all of us think about how much knowledge do we need in these 
systems? 
 
01:05:32.000 --> 01:05:38.000 
I mean stable diffusion, and you know transformers and stuff have almost no knowledge. 
 
01:05:38.000 --> 01:05:42.000 
And yet they're still able to emulate things that are you know. 
 
01:05:42.000 --> 01:05:56.000 
Pretty amazing, or even in chess, you know, with I mean, you know, Alpha 0, you know, has 
caused the revolution in chess, and it plays unlike any human player has ever played before. 
 
01:05:56.000 --> 01:06:03.000 
And it looks crazy. but it's you know it's also generating a sort of a renaissance of chess, so I 
don't know how this is going to play out. 
 
01:06:03.000 --> 01:06:08.000 
But it's you know, and I don't know How much how much knowledge do you need to design a 
computer system? 
 
01:06:08.000 --> 01:06:12.000 
I've been thinking about that because i'm giving this talk like you know, could G. P. 
 
01:06:12.000 --> 01:06:19.000 
T 3 just design renderman good question I don't really know I mean, you know. 
 
01:06:19.000 --> 01:06:32.000 
Do you really know it's all just random choices we all make, and there's no real reason for 
anything. So I don't know the answer to my first random man instead of render man exactly But 
Yeah, it's something we 
 
01:06:32.000 --> 01:06:37.000 
all need to think about hope you're funding some work on and ethics of all that. 
 
01:06:37.000 --> 01:06:42.000 
And how to think about it. Yeah, thanks thanks for the guidance there. 
 
01:06:42.000 --> 01:06:49.000 
So we don't have any other questions online anybody else in the room. have something you 
want to bring up coming up later this afternoon. 
 
01:06:49.000 --> 01:06:53.000 



We have an office hour for Nsf folks to to get a chance to talk to. 
 
01:06:53.000 --> 01:06:56.000 
Pat, is that going to be mixed online and in person as well? Yeah. 
 
01:06:56.000 --> 01:07:02.000 
Okay, so people can call on for that. Hopefully, you have. Oh, you want to ask, Ok. 
 
01:07:02.000 --> 01:07:06.000 
And Dilma will have our last question. Yes, Ok, I think already touched on this. 
 
01:07:06.000 --> 01:07:17.000 
But it's about how to educate the people who've been doing maybe the domain specific 
languages for just sciences and order fields like this intersection. Why worry? 
 
01:07:17.000 --> 01:07:28.000 
How going to get there because it seems that the computer science education the traditional 
one that I know always schools very rare like you said you didn't take Cs courses. 
 
01:07:28.000 --> 01:07:33.000 
Many people now graduated with the PHD. that they only took Cs courses. 
 
01:07:33.000 --> 01:07:46.000 
Maybe math. and if we're going to keep evolving the world, I think we have to get to someone 
who will think about the problems that you're thinking now in a domain that is really the 
domain. So so, if you think about how to better 
 
01:07:46.000 --> 01:07:51.000 
educate the next generation of thinkers. Well, I do think in in the languages. 
 
01:07:51.000 --> 01:07:55.000 
Example. That's a good question. I think it was a couple of things. 
 
01:07:55.000 --> 01:08:00.000 
First of all, we should make it easier to to build demand specific languages and framework. 
 
01:08:00.000 --> 01:08:06.000 
So there's a bunch of research in pl going on right Now, that is very relevant to that core. 
 
01:08:06.000 --> 01:08:16.000 
I'd say basic research. I mean some of it's really crazy like dependent type theory and 
independently type programming languages which are really great for building dsl's and you 
know it's very much at the 
 



01:08:16.000 --> 01:08:20.000 
forefront of pl research. So but I mean the pl community. 
 
01:08:20.000 --> 01:08:23.000 
I think, completely loves the idea of domestic languages. 
 
01:08:23.000 --> 01:08:28.000 
As you get no resistance from talking to them. they love, and they love the embedded Dsl. 
 
01:08:28.000 --> 01:08:32.000 
Idea, because, you know, I think I think programming language designers. 
 
01:08:32.000 --> 01:08:47.000 
Actually, when I talked to the C sharp team many years ago, and what they thought was the 
most important thing about our language was to enable building really sort of a libraries, and 
and they built things, if you remember link this was their query. 
 
01:08:47.000 --> 01:08:49.000 
and, like sequel, embedded in C sharp 
 
01:08:49.000 --> 01:08:55.000 
So they they were totally into it, and they thought that their job was to be able to build more 
sophisticated library. 
 
01:08:55.000 --> 01:08:58.000 
So I think of domain. specific languages is mostly like next generation. 
 
01:08:58.000 --> 01:09:06.000 
Libraries like, How do we build really more powerful libraries, you know, have built in compilers 
and reasoning about themselves. 
 
01:09:06.000 --> 01:09:09.000 
So. So yeah, So they they love it. But there needs to be more research on that. 
 
01:09:09.000 --> 01:09:16.000 
Pl. is not as popular as it used to be as a career of investment highly encouraged you to keep 
investing in it. 
 
01:09:16.000 --> 01:09:21.000 
You know it's also very much affects how we think of computing. 
 
01:09:21.000 --> 01:09:25.000 
I mean, I think things like Chat Gdp. and how you program in that. 
 



01:09:25.000 --> 01:09:31.000 
How you program in some of these advanced languages which have all these auto suggest 
modes like Hank. 
 
01:09:31.000 --> 01:09:40.000 
I've been used egged a lot it's pretty different. and you know just just how we think of 
programming. 
 
01:09:40.000 --> 01:09:45.000 
Just you know how we understand computation. just that's all wrapped up in these topics, you 
know. 
 
01:09:45.000 --> 01:09:49.000 
So I think that's a about the domain specific thing I think the thing to do. 
 
01:09:49.000 --> 01:09:53.000 
There would be to invest in joint projects where you have people. 
 
01:09:53.000 --> 01:09:59.000 
You need a lot of domain expertise when i've had to design Dsl's. 
 
01:09:59.000 --> 01:10:12.000 
I had a doe project where we're working with people doing simulation, and it was really hard to 
build the right, Dsl: you know, because it had you. It had you correspond to how they thought 
about their their problem area like what is the 
 
01:10:13.000 --> 01:10:19.000 
right level of abstraction. What are the right primitives, you know, and so on. 
 
01:10:19.000 --> 01:10:26.000 
And it was a long term process to sort of like think of a way of It's a way of thinking about your 
field, you know. 
 
01:10:26.000 --> 01:10:27.000 
It's like abstraction? like? What are the abstractions. 
 
01:10:27.000 --> 01:10:33.000 
What are your primitives? How do you? so? I think it would improve a lot of fields if there was 
projects like build a Dsl. 
 
01:10:33.000 --> 01:10:47.000 
For expressing the computation in your field that would help them formalize how they think 
about their own field. and at the same time it would inform the computer scientists about what 
they should be building. 



 
01:10:47.000 --> 01:10:50.000 
And they could help them, and there we come up with something useful. 
 
01:10:50.000 --> 01:11:06.000 
So you probably need both sides of that. thank you yeah all right thanks so much for the talk. 
 


