o, 1f - Y .
H +
\ S 2 » 9 - -

i BiOdESig“ﬁfOr Computing

vS’eephanle Forrest
Blode5|gn Institute and School of Computing
- Arizona Statedl niversity

My Interdisciplinary Trajectory

S Arizona State U., 2017 - present

University of New Mexico, 1990 - 2017

The Role of NSF

Lucky breaks

— PYI Award letter “Computational

aspects of the immune system”
(1991)

Interdisciplinary research becomes
socially acceptable

— The web
30 years of NSF funding, rarely large
grants
Goal for talk: Make the case for

strong connections between biology
and computation, beyond neurons

NATIONAL SCIENCE FOUNDATION
1800 G STREET, N.W.
WASHINGTON, D.C. 20550

Division of Information, Robotics, and Intelligent Systems (IRIS)

JuL 30 199l

Dr. Stephanie Forrest
Department of Computer Science
University of New Mexico
Albuquerque, NM 87131

Dear Dr. Forrest:

Your organization will shortly receive notification from the
National Science Foundation Grants Officer that its been awarded
a grant, with you as the principal investigator. Also, you will
find enclosed verbatim copies of the reviews of your proposal
entitled, "PYI: Computational Systems Based Upon Aspects of the
Immune System". Please accept my congratulations.

If I can be of assistance in any matter connected with the
administration of this grant, please do not hesitate to call me
at (202/357-9569).

Sincerely,
V] -

Y], /
‘LJ(_,«\ ﬂb T \p’*,
Helen M. Gigl 344 Ph.D.
Program Director
Knowledge Models &
Cognitive Systems

Enclosure

The Biology of Computation

Defending complex systems from malicious behavior
— Vaccine design, cancer, other evolving pathogens

Engineering and evolution of software

T-cell repertoire

~(0011110111001111

T-cell receptor
»~(0011110111001111 0011110111000101

1011111111001111

=[001111011111717111
MHC I + peptide 0011110001001111
Target cell

Computer Immune System Evolving Software

networkworld.com

https://networkworld.com

Information Processing in the Immune System

elearned distinction between self and other
ePrimary response to new foreign antigen
eEvolved biases towards common pathogens

eSecondary response
eCross-reactive memory

¢1011 — 1016 different foreign patterns from ~25,000 genes

macrophage phagocytosing bacteria upon contac http://www.history.com/news/vaccines diseases forgotten

http://www.history.com/news/vaccines

Cybersecurity Recapitulates Biology

e Anomaly intrusion detection, signature detection

e Address space randomization
Natural diversity for N-variant systems

Two-factor authentication

Ratchets, constructive neutral evolution
Limits to defense-in-depth?

Reversible complexity Entrenched complexity

RAID 6
mﬁ, Hydrophobic

mutations

Block AL W Parity Ad
Block B1
Srre B St

Hochberg et al. Nature, 2020

Evolution in Software

| FOWstride = 4 * gy,
' -_t;ytes = Fowstride * heign:
IF (bytes/rowstride \= neighn 1 ¢

I* overflow *|

-~ if (!((length | Ximage->hytes pet iy
{ printf("Horizontal Code Trans|

= ayit(-1);

Jose Luis Olivares networkworld.com

 Macro-level: Inadvertent evolution
 Micro-level: Evolutionary computation methods

https://networkworld.com

EVALUATE FITNESS

DISCARD

ACCEPT

MUTATE OUTPUT
So: C. Le Goues

ICSE '09: W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. Automatically finding patches
using genetic programming. 2019: Award: Most influential paper published at the 2009 IGSE.

The Secret Sauce

Start with a working program

Mutations mimic human operations
— Delete, Copy, Move/Replace

— Don’t invent new code, statement-level operations

Restrict mutations to statements executed by
failing test cases W i e

while (days > 365) ({

if (isLeapYear (year)) {
if (days > 366) {

Most bugs are small (L3 25060 11 wepase asiec

}
else {
}
days —= 366;
} else {
days —-= 365;
year += 1;
}
}

printf ("current year is %d\n", year);

How well does it work in practice?

Large systematic empirical studies with many tools
— Defects4): Java programs (all tools---36% correct)

— ManyBugs: Large opensource C programs (72% plausible)
Industry transitions

The Machine Learning tsunami

Caveats
— Buggy test cases
“Overfitting” (patch vs. repair)
What is a correct repair ?
Assumptions made by tool, e.g., fault localization to a single line
Reproducibility
Difficult to know what the ML models have been trained on

W\ Dorsa Amir @DorsaAmir - 2m
&~ When your code is a mess but it somehow still works.

Biological Properties of Software

Eric Schulte, Joe Renzullo, Jhe-Yu Liou

e Illlllli a n

Mutational robustness
— Mutation testing considered helpful

Neutral landscapes
Fitness distributions

— Where should we look for repairs?
Epistasis (interactions among genes)

Neutral Mutations

 Many biological mutations leave fitness
unchanged

— Buffering, genetic potential

* A neutral mutation passes the original test suite
— It may or may not pass held-out failing test cases
— Plentiful: ~30% of GenProg mutations are neutral!

if (right > left) {
// code elided

quick(left, r) E:::{::> quick(l, right)

quick(l, right) quick(left, r)
}

Schulte, et al. Software mutational robustness. Genet. Program. Evolvable Mach. 15, 281-312 (2014).
Harrand, et al. A journey among Java neutral program variants. Genet. Program. Evolvable Mach. 20, 531-580 (2039).

Neutral Mutations Enable Search

a Low mutation rate

K b : * For bug repairs
* For reducing GPU run-times

Nature Reviews | Microbiology

So: https://www.cambridge.org/core/journals/philosophy-of-science/article/abs/neutral-spaces-and-topological-explanations-in-evolutionary-biology-lessons-from-some-landscapes-and- 14
mappings/B6F5D33A8ECB582D324CF7C8E1FC4127

Buffer overflow repair (look)
ICSE Gl Workshop, 2018

Neutral mutations sometimes
repair latent bugs

Many semantically distinct
repairs

— Color indicates unique repairs

Network connects diverse
repairs by neutral
intermediate mutations

Insight: All repairs are neutral
wrt original test suite

Fitness Distributions:
Where are the repairs in neutral space?

units: Repaired Programs (10M Samples)

fit: y=(r*x) * a*e”(-bx)+c

r = a=0.997, b=0.004, c=0.023, r=0.00022
Generate Iarge pool [o
of neutral edits :

Generate random
subsets of pool

Apply each subset to
original program

Measure repair
frequency

0
S
©
—
o
o
[-
o
o
9]
—
©
Q
o)
4
c
o
=
O
©
—
L

200 400 600 800
Individually Safe Edits Applied

100 times more likely to find a patch at distance 200 than at distance 1

ACM TELQO, in press

Evolving Faster GPU Code

J. Liou, C. Wu and S. Forrest (TACO, 2020)

Overview of GEVO

GPU Compilation Flow

 GPUs important for ML and HPC, but challenging to optimize
 More complex mutation operators
* 49% average speedup on Rodinia benchmarks (NVIDIA Tesla P100)

Optimizations: Application logic, architecture-specific, dataset speaific

Optimizing Multiple Sequence Alignment Codes
(J. Liou, M. Gul Awan, C. Wu, S. Hofmeyr, and S. Forrest, ISWC 2022)

 Smith-Waterman algorithm (ADEPT)

M Baseline

— State-of-the art implementation on GPU B GEVO-opt

918

— Hand-optimized for GPU by human expert
* GEVO run

— 256 pop size; 300 gens; 7 days

— 64 mutations, 17 useful

1.28X
79 86 - 6.4 1.30X
I\ 66.3 . I\ o 0 1 1.17X
) 38.5
— 5 independent mutations (7%) r

- 1 2 i nte rd e p e n d e nt (18% i m p rove m e nt) ADEPT-b | ADEPT-o | ADEPT-b ADEPT-o ADEPT-b ADEPT-o

P100 1080ti V100

—

[\) ot -3
ot] ot

Kernel runtime (ms)
<

GEVO finds 28.5% run-time improvement over expert human-optimized version
18

GEVO optimizations are epistatic

Exec failed

> <%
> %
> 6%
S 10%
- 15%
- 7% (al)

Dependent

Speedup

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301

Evolution Generation

ADEPT-o0 on P100 GPU.

 Rearrange usage of sub-memory systems on GPU (15%)
— Use shared memory instead of private registers
 Remove redundant synchronizations (~4%)
— violates CUDA Programming guide
 Remove unnecessary memory initializations (30X on adept-b)

Epistatic optimizations can be hard for humans to find

The Bigger Picture

* Key ingredients of Darwinian evolution

— Variation: Mutation and recombination
— Natural selection
— Inheritance

e Software

— Selection and inheritance: Successful genes are copied:
libraries, packages, code snippets, etc.

— Variation: Programmers make small changes and
recombine successful genes

Thesis: Software today is the result of many generations of inadvertent evolution

20

Stack Overfiow

How to Test Webpage Optimization Techniques
Multivariate Testing and A/B testing Simplified

)

Uber Two-factor authentication attack

Continuous Integration Arms races

21

The Tinkerer and the Craftsman

Evolution

Unplanned and openended
Survival, relative fitness
Ongoing process
Incremental

Driven by random mutation

Engineering

Planned, with specifications
Purposeful, goal-driven
Clean slate design

Large jumps

Conducted by agents with
foresight and intent

‘Nature is a tinkerer, not an inventor’
F. Jacob

Evolution and Engineering

Antibiotic resistance

Directed evolution

Synthetic biology

Attack fuzzing in cybersecurity
Large jumps in evolution
Randomized algorithms
Software

Evolution and Engineering

Antibiotic resistance

Directed evolution

Synthetic biology

Attack fuzzing in cybersecurity
Large jumps in evolution
Randomized algorithms
Software

Evolution and Engineering

Antibiotic resistance

Directed evolution

Synthetic biology, xenobots
Attack fuzzing in cybersecurity
Large jumps in evolution
Randomized algorithms

Software Sheii

in silico in vivo

PNAS, 2020

Evolution and Engineering

Antibiotic resistance

Directed evolution

Synthetic biology

Attack fuzzing in cybersecurity
Large jumps in evolution
Randomized algorithms
Software

What are the best practices for engineering systems
in the context of evolution?

Claim: Software is an excellent starting point
Co-evolution

— Interactions with humans
— Interactions among software components ~ §

— Interactions with biology

Highly optimized tolerance

— Understanding tradeoffs between performance and
robustness (Carlson and Doyle)

Rethinking defense-in-depth and technological
ratchets

Summary

* The perspective of biology is important
because it provides insight and guidance

— Engineering (bio-inspired computing)
— Science (biological properties of computation)

THANK YOU

steph@asu.edu

https://profsforrest.github.io

References

W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. Automatically finding patches using genetic
programming. In ICSE ‘09: Proc. of the 2009 IEEE 31st Intl. Conf. on Software Engineering, pages
364—-374, Washington, DC, USA, 2009.

C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer. A systematic study of automated program
repair: Fixing 55 out of 105 bugs for $8.00 each. In ICSE ’12: Proc. of the IEEE 34th Intl. Conf. on
Software Engineering, 2012.

E. Schulte, Z. P. Fry, E. Fast, W. Weimer, and S. Forrest. Software mutational robustness. Genetic
Programming and Evolvable Machines, 15(3):281-312, 2014. DOI 10.1007/s10710-013-9195-.

E. Schulte, J. Dorn, S. Forrest, and W. Weimer. Post-compiler software optimization for reducing
energy. In Nineteenth Intl. Conf. on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2014.

J. Liou, X. Wang, S. Forrest, and C. Wu. Post-compiler performance tuning for general-purpose GPU
kernels. ACM Trans. on Architecture and Code Optimization, 17(4), 2020.

J. Liou, M. Awan, S. Hofmeyr, C. Wu, and S. Forrest. Understanding the power of evolutionary
computation for GPU code optimization. In 2022 IEEE International Symposium on Workload
Characterization, in press.

J. Renzullo, W. Weimer, and S. Forrest. Multiplicative weights algorithms for parallel automated
software repair. In 35th IEEE International Parallel and Distributed Processing Symposium, 2021.

