

Biodesign for Computing
Stephanie Forrest

Biodesign Institute and School of Computing
Arizona State University

Santa Fe Institute

May, 2023

My Interdisciplinary Trajectory

Arizona State U., 2017 - present

University of New Mexico, 1990 - 2017

Santa Fe Institute, 1990 - present

Center for Nonlinear Studies, LANL, 1988 - 1990

Univ. of Michigan, 1985

St. John’s College, 1977

2

The Role of NSF
• Lucky breaks

– PYI Award letter “Computational
aspects of the immune system”
(1991)

– Interdisciplinary research becomes
socially acceptable

– The web
• 30 years of NSF funding, rarely large

grants
• Goal for talk: Make the case for

strong connections between biology
and computation, beyond neurons

3

The Biology of Computation

• Defending complex systems from malicious behavior
– Vaccine design, cancer, other evolving pathogens
– Ch 1. Computer immune systems

• Engineering and evolution of software
– Ch 2. Micro-level: Evolutionary computation methods
– Ch 3. Macro-level: Inadvertent evolution

Computer Immune System Evolving Software
networkworld.com

4

https://networkworld.com

- -

Information Processing in the Immune System

•Learned distinction between self and other
•Primary response to new foreign antigen
•Evolved biases towards common pathogens

Immune systems learn to
recognize relevant patterns

•Secondary response
•Cross-reactive memory

They remember patterns
see previously

•1011 – 1016 different foreign patterns from ~25,000 genes
They use combinatorics to

construct pattern detectors

They are massively parallel
and distributed

Edward Jenner’s first smallpox vaccine
performed on James Phipps in 1796
http://www.history.com/news/vaccines diseases forgotten

5

http://www.history.com/news/vaccines

Cybersecurity Recapitulates Biology

• Anomaly intrusion detection, signature detection
Primary/secondary

responses

• Address space randomization
• Natural diversity for N-variant systems Heterogeneous defense

• Two-factor authentication Second signals

• Ratchets, constructive neutral evolution
• Limits to defense-in-depth? Increasing complexity

Hochberg et al. Nature, 2020
6

 -

Evolution in Software

Jose Luis Olivares networkworld.com

• Macro-level: Inadvertent evolution
• Micro-level: Evolutionary computation methods

7

https://networkworld.com

Micro-evolution of Software

GenProg
So: C. Le Goues

ICSE ’09: W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. Automatically finding patches
using genetic programming. 2019: Award: Most influential paper published at the 2009 ICSE. 8

The Secret Sauce

• Start with a working program
• Mutations mimic human operations
– Delete, Copy, Move/Replace
– Don’t invent new code, statement-level operations

• Restrict mutations to statements executed by
failing test cases

• Most bugs are small

9

How well does it work in practice?

• Large systematic empirical studies with many tools
– Defects4J: Java programs (all tools---36% correct)
– ManyBugs: Large opensource C programs (72% plausible)

• Industry transitions
• The Machine Learning tsunami
• Caveats

– Buggy test cases
– ‘’Overfitting” (patch vs. repair)
– What is a correct repair ?
– Assumptions made by tool, e.g., fault localization to a single line
– Reproducibility
– Difficult to know what the ML models have been trained on

10

11

Biological Properties of Software
Eric Schulte, Joe Renzullo, Jhe-Yu Liou

• Mutational robustness
– Mutation testing considered helpful

• Neutral landscapes
• Fitness distributions
– Where should we look for repairs?

• Epistasis (interactions among genes)
12

• Many biological mutations leave fitness
unchanged
– Buffering, genetic potential

• A neutral mutation passes the original test suite
– It may or may not pass held-out failing test cases
– Plentiful: ~30% of GenProg mutations are neutral!

Neutral Mutations

if (right > left) {
// code elided
quick(left, r)
quick(l, right)

}

quick(l, right)
quick(left, r)

Schulte, et al. Software mutational robustness. Genet. Program. Evolvable Mach. 15, 281–312 (2014).
Harrand, et al. A journey among Java neutral program variants. Genet. Program. Evolvable Mach. 20, 531–580 (2019).13

Neutral Mutations Enable Search

So: https://www.cambridge.org/core/journals/philosophy-of-science/article/abs/neutral-spaces-and-topological-explanations-in-evolutionary-biology-lessons-from-some-landscapes-and-
mappings/B6F5D33A8ECB582D324CF7C8E1FC4127

• Engineered diversity
• Reducing energy consumption
• For bug repairs
• For reducing GPU run-times

14

Neutral Landscapes

• Neutral mutations sometimes
repair latent bugs

• Many semantically distinct
repairs
– Color indicates unique repairs

• Network connects diverse
repairs by neutral
intermediate mutations

• Insight: All repairs are neutral
wrt original test suite

Buffer overflow repair (look)

ICSE GI Workshop, 2018
15

Fitness Distributions:
Where are the repairs in neutral space?

1. Generate large pool
of neutral edits

2. Generate random
subsets of pool

3. Apply each subset to
original program

4. Measure repair
frequency

ACM TELO, in press

100 times more likely to find a patch at distance 200 than at distance 1

16

Overview of GEVO

CUDA Program Source

C++ Compiler Device Codegen
(PTX)

Host (CPU)
code
Compilation

Device (GPU)
code

Compilation

binary

Host Code (C++) Device LLVM-IR

Evaluation

Mutation
Mutation

Mutation

Selection

Crossover

Mutation

GEVO[1]

Population

Test cases

2

GPU Compilation Flow

Search

sequence_dna_kernel
sequence_dna_reverse

Evolving Faster GPU Code
J. Liou, C. Wu and S. Forrest (TACO, 2020)

• GPUs important for ML and HPC, but challenging to optimize
• More complex mutation operators
• 49% average speedup on Rodinia benchmarks (NVIDIA Tesla P100)

Optimizations: Application logic, architecture-specific, dataset specific17

Optimizing Multiple Sequence Alignment Codes
(J. Liou, M. Gul Awan, C. Wu, S. Hofmeyr, and S. Forrest, ISWC 2022)

• Smith-Waterman algorithm (ADEPT)
– State-of-the art implementation on GPU
– Hand-optimized for GPU by human expert

• GEVO run
– 256 pop size; 300 gens; 7 days
– 64 mutations, 17 useful
– 5 independent mutations (7%)
– 12 interdependent (18% improvement)

GEVO finds 28.5% run-time improvement over expert human-optimized version
18

GEVO optimizations are epistatic

• Rearrange usage of sub-memory systems on GPU (15%)
– Use shared memory instead of private registers

• Remove redundant synchronizations (~4%)
– violates CUDA Programming guide

• Remove unnecessary memory initializations (30X on adept-b)

ADEPT-o on P100 GPU.

Epistatic optimizations can be hard for humans to find 19

The Bigger Picture

• Key ingredients of Darwinian evolution
– Variation: Mutation and recombination
– Natural selection
– Inheritance

• Software
– Selection and inheritance: Successful genes are copied:

libraries, packages, code snippets, etc.
– Variation: Programmers make small changes and

recombine successful genes

Thesis: Software today is the result of many generations of inadvertent evolution
20

Macro-evolution in Software

Continuous Integration Arms races
Uber Two-factor authentication attack

21

The Tinkerer and the Craftsman

Engineering

• Planned, with specifications
• Purposeful, goal-driven
• Clean slate design
• Large jumps
• Conducted by agents with

foresight and intent

Evolution

• Unplanned and openended
• Survival, relative fitness
• Ongoing process
• Incremental
• Driven by random mutation

‘Nature is a tinkerer, not an inventor’
F. Jacob

22

• Antibiotic resistance
• Directed evolution
• Synthetic biology
• Attack fuzzing in cybersecurity
• Large jumps in evolution
• Randomized algorithms
• Software

Evolution and Engineering

23

• Antibiotic resistance
• Directed evolution
• Synthetic biology
• Attack fuzzing in cybersecurity
• Large jumps in evolution
• Randomized algorithms
• Software

Evolution and Engineering

24

• Antibiotic resistance
• Directed evolution
• Synthetic biology, xenobots
• Attack fuzzing in cybersecurity
• Large jumps in evolution
• Randomized algorithms
• Software

Evolution and Engineering

(Fig. 4), despite modeling cardiomyocyte temporal coordination as
random noise. As a side effect of selection pressure for locomotion,
derandomizing morphologies evolved: evolutionary improvement
occurred through changes in overall shape, and distribution of the
passive and contractile cells, to collectively derandomize the global
movement produced by the random actuation. In biology, such
robustness to random noise is ubiquitous; one example is the ability
of many species to adapt to wide ranges of diversity in cell size and
number as starting points in their embryogenesis (23).
The behavioral competence of individual cells, and the pro-

pensity of cells to cooperate in groups, facilitate functional mor-
phogenesis in novel circumstances. The lifeforms presented here,
despite lacking nervous systems, following novel developmental
trajectories, and being composed of materials from different tis-
sues, nevertheless possess these self-organizing properties. These
properties synergize with and support the behavior they were
designed to exhibit. For instance, although signaling between
cardiomyocytes was not enforced, emergent spontaneous co-
ordination among the cardiac muscle cells produced coherent,
phase-matched contractions which aided locomotion in the phys-
ically realized designs. Also, some of the designs, when combined,
spontaneously and collectively aggregate detritus littered within
their shared environment (Fig. 3F and SI Appendix, Fig. S11).
Finally, reconfigurable organisms not only self-maintain their ex-
ternally imposed configuration, but they also self-repair in the face
of damage, such as automatically closing lacerations (SI Appendix,
Fig. S9). Such spontaneous behavior cannot be expected from
machines built with artificial materials unless that behavior was
explicitly selected for during the design process (24).
This approach admits future generalization and automation

because the generator-and-filter architecture enables modular
addition, removal, or reorganization of elements in the pipeline
for rapid design and deployment of new living systems for new
tasks in new domains. For instance, a filter could be added which

preemptively steers the evolutionary algorithm away from por-
tions of the design space known to contain designs that cannot be
realized physically (25). Or, inspired by the hierarchical organi-
zation of deep neural networks (26), individual designs output by
one generator could become the building blocks input to the next
generator, thus enabling hierarchical design and reuse of cellular
assemblies, and assemblies of assemblies.
Beyond the applications reported here, the generality of this

approach is as of yet unknown. But, advances in machine learning,
soft body simulation, and bioprinting are likely to broaden the
potential applications to which it may be put in the future. Ap-
plications could be numerous, given the ease of misexpressing
novel proteins and synthetic biology pathways and computational
circuits in Xenopus cells (27). Given their nontoxicity and self-
limiting lifespan, they could serve as a novel vehicle for intelligent
drug delivery (28) or internal surgery (29). If equipped to express
signaling circuits and proteins for enzymatic, sensory (receptor),
and mechanical deformation functions, they could seek out and
digest toxic or waste products, or identify molecules of interest in
environments physically inaccessible to robots. If equipped with
reproductive systems (by exploiting endogenous regenerative
mechanisms such as occurs in planarian fissioning), they may be
capable of doing so at scale. In biomedical settings, one could en-
vision such biobots (made from the patient’s own cells) removing
plaque from artery walls, identifying cancer, or settling down to
differentiate or control events in locations of disease. A beneficial
safety feature of such constructions is that in the absence of specific
metabolic engineering, they have a naturally limited lifespan.
These methods, reagents, and data extend the breadth of model

organisms available for study by designing living systems that are
as orthogonal as possible to existing species, yet capable of being
built from existing cell types. By enabling a computationally
guided interplay between emergent and designed processes, this
platform facilitates studies of the relationship between genomes

C F

X position (body lengths)

in silico

in vivo

Y
po

si
tio

n
(b

od
y

le
ng

th
s)

A B D E

in vivoin vivoin silico in silico

Upright Inverted

ectoderm

cardiac

R
un

 5
2

Fig. 4. Transferal from silico to vivo. The first design selected for fabrication and specific hypothesis testing (A) was the most robust yet stable and energy-
efficient configuration of passive (epidermis; green) and contractile (cardiac; red) tissues found by the evolutionary algorithm. The design was evaluated 25
times for 1 min of simulation time, resulting in 25 movement trajectories (pink curves in C). Six reconfigurable organisms were built which embodied this
design (e.g., B) (SI Appendix, section S9). Three were evaluated four times and the other three were evaluated five times for 10 min each (27 blue curves in C).
The organisms’ direction of movement matched the design’s predicted direction of movement (P < 0.01; details in SI Appendix, section S9). To determine
whether the organisms’ movement was a result of chance or due to the design’s evolved geometry and tissue placement, geometry and tissue distribution
was altered by rotating the design 180° about its transverse plane (D) and evaluating it another 25 times in silico (pink curves in F). Each of the six organisms
were likewise inverted (E): four were evaluated five times while the remaining two were only evaluated once (22 blue curves in F). Inverting the design
significantly reduces its net displacement (P < 0.001), as did inverting the organisms (P < 0.0001).

Kriegman et al. PNAS | January 28, 2020 | vol. 117 | no. 4 | 1857

CO
M
PU

TE
R
SC

IE
N
CE

S
SY

ST
EM

S
BI
O
LO

G
Y

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y

72
.2

00
.1

14
.1

08
 o

n
M

ay
 1

5,
 2

02
3

fr
om

 IP
 a

dd
re

ss
 7

2.
20

0.
11

4.
10

8.

PNAS, 2020

25

• Antibiotic resistance
• Directed evolution
• Synthetic biology
• Attack fuzzing in cybersecurity
• Large jumps in evolution
• Randomized algorithms
• Software

Evolution and Engineering

26

What are the best practices for engineering systems
in the context of evolution?

• Claim: Software is an excellent starting point
• Co-evolution
– Interactions with humans
– Interactions among software components
– Interactions with biology

• Highly optimized tolerance
– Understanding tradeoffs between performance and

robustness (Carlson and Doyle)
• Rethinking defense-in-depth and technological

ratchets

27

Summary

• The perspective of biology is important
because it provides insight and guidance
– Engineering (bio-inspired computing)
– Science (biological properties of computation)

"As engineers, we would be foolish to ignore the
lessons of a billion years of evolution”

Carver Mead
28

THANK YOU

steph@asu.edu
https://profsforrest.github.io

References
• W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. Automatically finding patches using genetic

programming. In ICSE ’09: Proc. of the 2009 IEEE 31st Intl. Conf. on Software Engineering, pages
364–374, Washington, DC, USA, 2009.

• C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer. A systematic study of automated program
repair: Fixing 55 out of 105 bugs for $8.00 each. In ICSE ’12: Proc. of the IEEE 34th Intl. Conf. on
Software Engineering, 2012.

• E. Schulte, Z. P. Fry, E. Fast, W. Weimer, and S. Forrest. Software mutational robustness. Genetic
Programming and Evolvable Machines, 15(3):281–312, 2014. DOI 10.1007/s10710-013-9195-.

• E. Schulte, J. Dorn, S. Forrest, and W. Weimer. Post-compiler software optimization for reducing
energy. In Nineteenth Intl. Conf. on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2014.

• J. Liou, X. Wang, S. Forrest, and C. Wu. Post-compiler performance tuning for general-purpose GPU
kernels. ACM Trans. on Architecture and Code Optimization, 17(4), 2020.

• J. Liou, M. Awan, S. Hofmeyr, C. Wu, and S. Forrest. Understanding the power of evolutionary
computation for GPU code optimization. In 2022 IEEE International Symposium on Workload
Characterization, in press.

• J. Renzullo, W. Weimer, and S. Forrest. Multiplicative weights algorithms for parallel automated
software repair. In 35th IEEE International Parallel and Distributed Processing Symposium, 2021.

30

