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AI will affect 
every step of 
this process 



Groundbreaking Discoveries and Translation 
• Develop a new 

understanding of the laws of 
nature and rules of life 

• Accelerate affordable drug 
development 

• Engineer green materials  

• Build quantum computers 

• Develop sustainable climate  
policies 

image credit: https://www.greenbiz.com/article/whats-your-sustainability-moonshot 
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Developing applied machine 
learning without understanding 
math, stats, & CS foundations is 
like developing biotech without 

understanding biology. 
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Faster optimization methods for ML 

• Machine learning uses training 
data to set parameters of a model 
(e.g. neural network weights) 

• We train models using 
optimization methods which 
update parameters based on 
gradients of the loss 

Adagrad adapts gradients to 
past estimates, accelerating 

training; foundation of popular 
methods like Adam 

Duchi, Hazan, Singer, 2011 
Kingma and Ba, 2014 



Faster optimization across multiple computers 
• Large-scale machine learning is typically 

distributed across multiple machines 

• Expectation: more machines = faster 
computation 

• Reality with naïve distributed 
optimization: more machines = 
diminishing returns 

Recht, Re, Wright, Niu, 2011 



Faster optimization across multiple computers 
• Large-scale machine learning is typically 

distributed across multiple machines 

• Expectation: more machines = faster 
computation 

• Reality with naïve distributed 
optimization: more machines = 
diminishing returns 

Hogwild: theoretically-grounded 
asynchronous distributed 

optimization  faster 
computation with more 

machines 

⇒ 

Recht, Re, Wright, Niu, 2011 



• Common standard: -anonymity, 
which transforms data just 
enough to make each individual 
indistinguishable from  others in 
the data set. 

• Legally sufficient for fulfilling 
privacy-protection regulations 
such as HIPAA and GDPR 

• Foundational insight: users redact 
the minimum possible to satisfy 
-anonymity. Knowing they 
redacted the minimum provides 
additional information about what 
was redacted. 

k

k 

k 

Privacy guarantees 

Cohen, 2022 



Privacy guarantees 
• How can we preserve the privacy of people represented by our data? 
• Classical approach: aggregate data 
• E.g., only release summary statistics for 10 or more people.  
• Without more conditions, very easy to break 

• More recent: differential privacy 
• E.g., randomly perturb data 
• Guarantees that someone seeing algorithm output cannot tell if a particular person’s data 

was used 

no privacy high privacy 

Dwork, McSherry, Nissim and Smith, 2006 
Image: https://aircloak.com/explaining-differential-privacy/ 

https://aircloak.com/explaining-differential-privacy/


Quantifying uncertainty in predictions 

• We need not only raw ML predictions; 
we also want to know how certain the 
ML model is about its prediction 

• Essential in climate analysis, model 
predictive control, automatic 
translation… 

• Classical methods required either 
simple models (i.e., no neural networks) 
or strong prior knowledge 

https://www.allianz.com/en/press/news/commitment/environment/190912_Allianz-drones-and-hurricanes-flying-masters-of-disasters.html 



Conformal prediction allows us to assess uncertainties of ML 
predictions with theoretical guarantees and minimal assumptions 

Lei, G'Sell, Rinaldo, Tibshirani, Wasserman, 2016 
Tibshirani, Barber, Candès, and Ramdas, 2019 
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Allocating data collection resources 

• Collecting data and assigning 
labels for training data is laborious 
and expensive 

• Bandit algorithms, active learning, 
and Bayesian optimization guide 
data collection and labeling 

• Widely used throughout industry 
(e.g., for ad placement) 

Thompson, 1933 
Russo, Van Roy, Kazerouni, Osband & Wen, 2018 

https://en.wikipedia.org/wiki/File:Las_Vegas_slot_machines.jpg 



Video credit: Samuli Siltanen https://www.youtube.com/watch?v=q7Rt_OY_7tU 

https://www.youtube.com/watch?v=q7Rt_OY_7tU
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Can machine learning help reconstruct images? 

Train deep neural network to reconstruct CT 
images from sinogram measurements 

Zhu, Liu, Rosen, Rosen, 2017; Arridge, Maass, Öktem, Schönlieb, 2019; Ongie, Jalal, Metzler, Baraniuk, Dimakis, Willett, 2020; 
Akçakaya, Yaman, Chung, Ye, 2022; Sahel, Bryan, Cleary, Farhi, Eldar, 2022; Kamilov, Bouman, Buzzard, Wohlberg, 2022 



Can machine learning help reconstruct images? 

This approach can require many training samples. 
It also ignores everything we know about the data collection process. 

Train deep neural network to reconstruct CT 
images from sinogram measurements 

Zhu, Liu, Rosen, Rosen, 2017; Arridge, Maass, Öktem, Schönlieb, 2019; Ongie, Jalal, Metzler, Baraniuk, Dimakis, Willett, 2020; 
Akçakaya, Yaman, Chung, Ye, 2022; Sahel, Bryan, Cleary, Farhi, Eldar, 2022; Kamilov, Bouman, Buzzard, Wohlberg, 2022 



Can we design neural networks  
to reflect our knowledge of the 

underlying physics? 



Can we design neural networks  
to reflect our knowledge of the 

underlying physics? 

Yes! To do so, we leverage decades of 
accumulated knowledge of inverse 

problems, data assimilation, and optimization  



Example: linear inverse problems in imaging 

Observe:           
Goal:            Recover  from 

y = Hx + ε 
x y 

x 

y 
“forward model”  reflects 
the physics of the imaging 

system 

H 



Classical approach to solving inverse problems 

minimize 
x 

∥Hx − y∥2 + R(x) 

Regularization function 
measures to what extent 
an image  has expected 

geometry (e.g. 
smoothness or sharp 

edges) 

x 

Data fit term 
measures how well 
image  fits 
observation , taking 
physical model  into 
account 

x 
y

H 



Optimization framework 

𝖺𝗋𝗀 𝗆𝗂𝗇
x

∥Ax − y∥2 + R(x)y ̂xminimize 
x 

∥Hx − y∥2 + R(x) 

x(1) 
x(2) 

repeat until  
convergence 

regu-
larize 

z(1)
data 

consis-
tency 

regu-
larize 

z(2)
data 

consis-
tency 

x(3) 

x(k+1) = arg min
x

∥x − z(k)∥2 + ηR(x)
z(k) = x(k) − ηH⊤(Hx(k) − y) 

for k = 1, 2, . . . 
data consistency step 

regularization step 
(e.g. proximal operator) 

regularize(z(k), R) 

data 
mismatch irregularity 



Deep Unrolling 

data 
consis-
tency 

x(1) … 
z(1) 

x(3) x(K) = ̂xx(2) z(2) z(K−1) 

 blocksK 

data 
consis-
tency 

data 
consis-
tency 

𝖺𝗋𝗀 𝗆𝗂𝗇
x

∥Ax − y∥2 + R(x)

x(k+1) = arg min
x

∥x − z(k)∥2 + ηR(x) regularization stepCNN(z(k)) 

𝖺𝗋𝗀 𝗆𝗂𝗇
x

∥Ax − y∥2 + R(x)y ̂xminimize 
x 

∥Hx − y∥2 + R(x) 

z(k) = x(k) − ηH⊤(Hx(k) − y) 
for k = 1, 2, . . . 

data consistency step 

data 
mismatch irregularity 



Enabling faster data acquisition and faster reconstruction 
11
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29.6929.8631.5335.34

Fig. 11: Using the R&R model adaptation approach permits using a U-Net trained for 6⇥ acceleration on MRI reconstruction
across a range of acceleration parameters. Without adaptation, the reconstruction quality decreases, even when more k-space
measurements are taken, as originally observed in [3]. We provide reconstruction PSNR (in dB) in each image. The inverse
solver here is a U-Net trained with the sampling mask in the second-to-last column (outlined in red). Todo: Is this R&R+? If
so, please label it as such.

Truth R&R+ Blur GAN Blur R&R+ SR GAN SR

Fig. 12: Comparison of model adaptation (R&R) with a
model-blind GAN-based reconstruction approach for motion
deblurring (Blur) and super-resolution (SR). While a GAN-
based approach only requires learning a single generative
network for all forward models, our results suggest that a
network trained for a specific forward model with same number
training samples gives better reconstructions. Best viewed
electronically.

networks are truly “solving” a given inverse problem, i.e., lead
to a well-defined inverse mapping of the measurement model.
However, to show this would require a much more detailed
analysis of the estimator defined by the R&R approach that is
beyond the scope of this work.

Finally, while we focused our attention on model drift, an
important open problem is how to adapt to simultaneous model
and data distribution drift, and understanding the extent to
which these effects can be treated independently. We hope to
address these questions in future work.
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Ground  
Truth 



Physics-guided neural network architecture 

x(1) … 
z(1) 

x(K) = ̂xx(2) z(K−1) 
ηH⊤y 

x(k) z(k) 

ηH⊤y 

weight matrix = 
 is 

determined by 
physical model 

instead of learned 
from data 

I − ηH⊤H = 

data 
consis-
tency 

data 
consis-
tency 

data 
consis-
tency 

(I − ηH⊤H)x(k)+ηH⊤y 



Some elements of 
architecture and their 
weights are fixed, 
determined by choice 
of optimization method, 
forward model , and 
observed image data . 

H 
y 

Physics-guided neural network architecture 

x(1) … ̂x

ηH⊤y 

Some 
weights to 
be learned 
from 
training data 



Physical models, inverse 
problem methods, and 

optimization theory lead 
to novel architectures 

Some elements of 
architecture and their 
weights are fixed, 
determined by choice 
of optimization method, 
forward model , and 
observed image data . 

H 
y 

Physics-guided neural network architecture 

x(1) … ̂x

ηH⊤y 

Some 
weights to 
be learned 
from 
training data 



These advances 
depend on decades of 

NSF investment  
in foundational research 
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How do we 
design 

regulations 
and 

certification 
of ML 

systems? 



How do we 
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Efficiency 



Efficiency 

Math, stats, & CS foundations 
help us optimize architectures 

and training efficiency 



• How much data do we need?  
• How can we promote robustness? 
• Will models work in new settings? 
• Can we make machine learning more sustainable? 
• Do transformers offer special advantages?  
• How do we design next-gen architectures? 



Neural networks are functions 

hθ(x) 
x2 

xd 

⋮ 

x1 

Network inputs vector  and 
outputs a prediction  that 
depends on learned weights 

x 
̂ y = hθ(x) 

θ 

• How much data do we need?  
• How can we promote robustness? 
• Will models work in new settings? 
• Can we make machine learning more sustainable? 
• Do transformers offer special advantages?  
• How do we design next-gen architectures? 



Neural networks are functions 

These are both functions; for every 2-d input , 
the color shows what the output value  would be.  

Both functions exactly fit the same training data but with 
different weights . What determines which function will 

be selected when we train the neural network? 

x = [x1, x2] 
̂ y = hθ(x) 

θ

x1 

x1 

x2 

x2 

hθ(x) 
x2 

xd 

⋮ 

x1 

Network inputs vector  and 
outputs a prediction  that 
depends on learned weights 

x 
̂ y = hθ(x) 

θ 



ML will fundamentally 
change the nature and pace 

of scientific discovery,  
influencing data analysis, 
hypothesis generation, 

simulation, and experimental 
design 

ML 



Uncovering 
new laws of 

nature 

Physics-
informed 
machine 
learning 

Advancing  
ML frontiers 

AI-guided 
scientific 

measurement 
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Given observations of a system, use AI to 
uncover the governing physical laws 



https://www.youtube.com/watch?v=q3kNHomvU0k 

dx 

dt 
= σ(y − x) 

dy 

dt 
= x(ρ − z) − y 

dz 

dt 
= xy − βz 



Can we learn governing equations from data? 

dx 

dt 
= σ(y − x) 

dy 

dt 
= x(ρ − z) − y 

dz 

dt 
= xy − βz 



Biophysical 
forces of cell 
development 
and function 

Dynamics of 
microbial 

communities 

Soft condensed 
matter and 

polymer physics 
Emergent behavior of 
agent-based models 



Learn weights from data. Only two are non-zero: w2 = − w1 = σ 

Brunton, Proctor, & Kutz 2016 

Sparse Identification of Nonlinear Dynamics (SINDy) 

dx 

dt 
= w0 + w1x+w2y+w3z+w4x2+w5xy+w6xz+w7y2 + ⋯+w*z5 

Repeat for  and  to recover full dynamics 
dy 

dt 
dz 

dt 



Can we learn governing equations from data? 
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Can we learn governing equations from data? 

dx 

dt 
= σ(y − x) 

dy 

dt 
= x(ρ − z) − y 

dz 

dt 
= xy − βz 

Equation discovery with high-
dimensions, sparse and noisy 
data, etc., poses significant 

foundational challenges 



Uncovering 
new laws of 

nature 

Physics-
informed 
machine 
learning 

Advancing  
ML frontiers 

AI-guided 
scientific 

measurement 



Use AI to design better experiments, 
simulations, and sensors 



How do we design a microbial community with maximum fitness? 



How do we design a microbial community with maximum fitness? 

Community fitness =  where 
• train population densities 
• utrient sources concentration 
• nti-microbial peptides concentration 
• nvironmental conditions 
•  is an unknown function we want to maximize 

f(S, N, A, E) 
S = S
N = N
A = A
E = E
f 
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test them all 

Sampling at random may mean 
conducting many experiments 
far from the maximum we seek 

(S, N, A, E) 



How do we design a microbial community with maximum fitness? 

Community fitness =  where 
• train population densities 
• utrient sources concentration 
• nti-microbial peptides concentration 
• nvironmental conditions 
•  is an unknown function we want to maximize 

f(S, N, A, E) 
S = S
N = N
A = A
E = E
f 

There are too many possible 
combinations of  to 
test them all 

Sampling at random may mean 
conducting many experiments 
far from the maximum we seek 

(S, N, A, E) 

Foundational work in uncertainty 
quantification, active learning, 

and bandit methods help guide 
sequences of experiments to 
find maximally fit communities. 





Uncovering 
new laws of 

nature 

Physics-
informed 
machine 
learning 

Advancing  
ML frontiers 

AI-guided 
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Optimally leverage physical models and 
experimental or observational data 



Physics 
Experi-
ments 

Climate Forecasting Molecular Structure 
Estimation 

Also fluid dynamics, turbulence, particle 
accelerators, scattering, automatic control… 

There are many 
settings in which 

we have both 
training data and 
physical models. 



Learning from simulations
requires understanding 

distribution drift, transfer 
learning, data assimilation, 
reduced-order modeling, 

and active learning 

Learning from simulations 



How to jointly leverage 
simulations and data? 

Upscaling molecular 
dynamics simulations 

Physics-informed neural networks 
dx 

dt 
= σ(y − x) 

dy 

dt 
= x(ρ − z) − y 

dz 

dt 
= xy − βz 

Physics-informed machine 
learning promotes robustness 
and efficiency, and is essential 

to extrapolating beyond 
domain of training data 



Uncovering 
new laws of 

nature 

Physics-
informed 
machine 
learning 

Advancing  
ML frontiers 

AI-guided 
scientific 

measurement 



Develop new ML theory and methods 
inspired by scientific settings  

with broad impacts 



https://www.science.org/content/article/models-galaxies-atoms-simple-ai-shortcuts-speed-simulations-billions-times 

Learned emulators 
are models trained to 

mimic numerical 
simulations at a much 
lower computational 
cost, particularly for 
parameters or inputs 
that have not been 

simulated. 

https://www.science.org/content/article/models-galaxies-atoms-simple-ai-shortcuts-speed-simulations-billions-times


Generative Models for Science 

Generative models in science must account for 

• much less data than ChatGPT, DALL·E 

• rare events, chaotic dynamics 

• wide variations in scales and resolutions 

• physical models, constraints, symmetries, & 
invariances 



[Some caveats] 

1. Protective Gear: Football players often wear more extensive protective gear, including helmets, shoulder pads, 
and shin guards. This gear can provide additional protection against certain types of injuries, whereas badminton 
players typically wear minimal protective equipment. 

2. Rules and Refereeing: Football has strict rules and regulations enforced by referees, which can contribute to a 
more controlled and organized game. The presence of referees helps ensure that players adhere to the rules, 
minimizing the potential for dangerous situations. Badminton, being a non-contact sport, relies on players' 
sportsmanship and adherence to rules.  

3. Physical Conditioning: Football players undergo rigorous physical conditioning to prepare for the demands of the 
sport. This conditioning can help reduce the risk of injuries by enhancing strength, flexibility, and overall fitness. 
Badminton players also need to be fit, but the physical demands of the sport are generally less intense. 

List 3 reasons football is safer than badminton 
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List 3 reasons football is safer than badminton 

Generative models can produce plausible results, but 
foundational work is needed to make them trustworthy 



Uncertainty 
quantification 

aids in  
validating models, 
guiding scientific 

measurement, and 
analyzing rare events 

Uncertainty 
quantification 



Graphs: a fundamental representation of scientific data 
https://www.pulsus.com/scholarly-articles/essentials-in-brain-connectivity-3758.html,  

https://isbscience.org/about/what-is-systems-biology/network-biology/, https://www.youtube.com/watch?v=_3uQqrrBcrQ 

REVIEW ARTICLE

Graph neural networks for materials science and 
chemistry 
Patrick Reiser1,2 , Marlen Neubert1 , André Eberhard1 , Luca Torresi 1 , 
Chen Zhou 1 , Chen Shao1,6 , Houssam Metni 1,3 , Clint van Hoesel1,4 , 
Henrik Schopmans1,2 , Timo Sommer 1,5,7 & Pascal Friederich 1,2✉ 

Machine learning plays an increasingly important role in many areas of chemistry and

materials science, being used to predict materials properties, accelerate simulations, design

new structures, and predict synthesis routes of new materials. Graph neural networks

(GNNs) are one of the fastest growing classes of machine learning models. They are of

particular relevance for chemistry and materials science, as they directly work on a graph or

structural representation of molecules and materials and therefore have full access to all

relevant information required to characterize materials. In this Review, we provide an over-

view of the basic principles of GNNs, widely used datasets, and state-of-the-art architectures,

followed by a discussion of a wide range of recent applications of GNNs in chemistry and

materials science, and concluding with a road-map for the further development and appli-

cation of GNNs.

Data science and machine learning have become an integral part of natural sciences,
discussed as the fourth pillar in science, next to experiment, theory, and simulation1.
Machine learning methods are increasingly applied in all steps of the materials devel-

opment cycle, from finding initial candidate materials using property prediction2,3, database
screening4,5 or even inverse materials design6,7, over the detailed analysis of materials in machine
learning accelerated simulations8,9, to the prediction of synthesis conditions10,11 and automated
experimental data analysis12,13 and experimental planning14. Machine learning models applied
in chemistry and materials science cover a wide spectrum of methods, ranging from classical
machine learning models such as decision tree ensembles to modern deep learning methods such
as convolutional neural networks15 and sequence models16 originally developed for challenges in
computer vision and natural language processing.

A recent addition to the toolbox of machine learning models for chemistry and materials
science are graph neural networks (GNNs), which operate on graph-structured data and have
strong ties to the field of geometric deep learning17–19. Aside from research on social and citation
networks as well as knowledge graphs, chemistry has been one of the main drivers in the
development of GNNs20,21. Graph neural networks can be interpreted as the generalization of
convolutional neural networks to irregular-shaped graph structures. While other machine
learning methods, e.g., convolutional neural networks are at the peak of publication activity,
GNNs are still rising exponentially, with hundreds of papers per year since 2019. Their archi-
tecture allows them to directly work on natural input representations of molecules and materials,

https://doi.org/10.1038/s43246-022-00315-6 OPEN 

1 Institute of Theoretical Informatics, Karlsruhe Institute of Technology, Am Fasanengarten 5, 76131 Karlsruhe, Germany. 2 Institute of Nanotechnology,
Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. 3 ECPM, Université de Strasbourg, 25 Rue
Becquerel, 67087 Strasbourg, France. 4 Department of Applied Physics, Eindhoven University of Technology, Groene Loper 19, 5612 AP Eindhoven, The
Netherlands. 5 Institute for Theory of Condensed Matter, Karlsruhe Institute of Technology, Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany. 6Present
address: Institute for Applied Informatics and Formal Description Systems, Karlsruhe Institute of Technology, Kaiserstr. 89, 76133 Karlsruhe, Germany.
7Present address: School of Chemistry, Trinity College Dublin, College Green, Dublin 2, Ireland. ✉email: pascal.friederich@kit.edu

COMMUNICATIONS MATERIALS | ���������� �(2022)�3:93� | https://doi.org/10.1038/s43246-022-00315-6 | www.nature.com/commsmat 1

12
34

56
78

9
0
()
:,;

https://www.youtube.com/watch?v=_3uQqrrBcrQ
https://isbscience.org/about/what-is-systems-biology/network-biology
https://www.pulsus.com/scholarly-articles/essentials-in-brain-connectivity-3758.html


Privacy, transparency, fairness, 
and accountability 

pose additional foundational 
challenges with human-centric data 



Uncovering 
new laws of 

nature 

Physics-
informed 
machine 
learning 

Advancing  
ML frontiers 

ML-guided 
scientific 

measurement 

Machine Learning Foundations 



AI & ML are transforming science 

Investments in AI & ML 
foundations are essential for high-
quality, reproducible, AI-enabled 

scientific research 







Training activities (summer schools, 
workshops, cross-disciplinary 

collaborations) catalyze ground-
breaking research and accelerate 

workforce development 









Developing applied machine 
learning without understanding 
math, stats, & CS foundations is 
like developing biotech without 

understanding biology. 



Thank you! 
willett@uchicago.edu 

mailto:willett@uchicago.edu

	Structure Bookmarks
	Machine Learning Foundations Accelerate Innovation and Promote Trustworthiness Rebecca Willett University of Chicago 
	Machine Learning Foundations Accelerate Innovation and Promote Trustworthiness Rebecca Willett University of Chicago 
	Artifact
	Artifact
	Artifact
	AI will affect every step of this process 
	Artifact
	Groundbreaking Discoveries and Translation 
	• 
	• 
	• 
	Develop a new understanding of the laws of nature and rules of life 

	• 
	• 
	Accelerate affordable drug development 

	• 
	• 
	Engineer green materials  

	• 
	• 
	Build quantum computers 

	• 
	• 
	Develop sustainable climate  policies 


	Artifact
	image credit: 
	https://www.greenbiz.com/article/whats-your-sustainability-moonshot 
	https://www.greenbiz.com/article/whats-your-sustainability-moonshot 
	https://www.greenbiz.com/article/whats-your-sustainability-moonshot 



	Developing  without understanding  is like developing  without understanding . 
	applied machine learning
	math, stats, & CS foundations
	biotech
	biology

	Machine learning foundations’ impact 
	Emerging and future directions 
	Machine learning foundations’ impact 
	Emerging and future directions 
	Faster optimization methods for ML 
	Artifact
	• 
	• 
	• 
	Machine learning uses training data to set parameters of a model (e.g. neural network weights) 

	• 
	• 
	We train models using optimization methods which update parameters based on gradients of the loss 


	 adapts gradients to past estimates, accelerating training; foundation of popular methods like 
	 adapts gradients to past estimates, accelerating training; foundation of popular methods like 
	Adagrad
	Adam 


	Duchi, Hazan, Singer, 2011 
	Duchi, Hazan, Singer, 2011 
	Kingma and Ba, 2014 

	Faster optimization across multiple computers 
	• 
	• 
	• 
	Large-scale machine learning is typically distributed across multiple machines 

	• 
	• 
	: more machines = computation 
	Expectation
	faster 


	• 
	• 
	 with naïve distributed optimization: more machines = 
	 with naïve distributed optimization: more machines = 
	Reality
	diminishing returns 

	Artifact


	• 
	• 
	Large-scale machine learning is typically distributed across multiple machines 

	• 
	• 
	: more machines = computation 
	Expectation
	faster 


	• 
	• 
	 with naïve distributed optimization: more machines = 
	Reality
	diminishing returns 



	Artifact
	Hogwild: theoretically-grounded asynchronous distributed optimization  faster computation with more machines ⇒ 
	Artifact
	Privacy guarantees 
	• 
	• 
	• 
	• 

	Common standard: -anonymity, which transforms data just enough to make each individual indistinguishable from  others in the data set. 
	k
	k 


	• 
	• 
	Legally sufficient for fulfilling privacy-protection regulations such as HIPAA and GDPR 

	• 
	• 
	Foundational insight: users redact the  to satisfy -anonymity. Knowing they redacted the minimum provides additional information about what was redacted. 
	Foundational insight: users redact the  to satisfy -anonymity. Knowing they redacted the minimum provides additional information about what was redacted. 
	minimum possible
	k 

	Artifact



	• 
	• 
	• 
	How can we preserve the privacy of people represented by our data? 

	• 
	• 
	Classical approach: 
	Classical approach: 
	aggregate data 

	• 
	• 
	• 
	E.g., only release summary statistics for 10 or more people.  

	• 
	• 
	Without more conditions, very easy to break 




	• 
	• 
	differential privacy 
	differential privacy 
	More recent: 

	• 
	• 
	• 
	E.g., randomly perturb data 

	• 
	• 
	Guarantees that someone seeing algorithm output cannot tell if a particular person’s data was used 





	no privacy high privacy 
	Image: 
	Dwork, McSherry, Nissim and Smith, 2006 
	https://aircloak.com/explaining-differential-privacy/ 
	https://aircloak.com/explaining-differential-privacy/ 
	https://aircloak.com/explaining-differential-privacy/ 



	Quantifying uncertainty in predictions 
	https://www.allianz.com/en/press/news/commitment/environment/190912_Allianz-drones-and-hurricanes-flying-masters-of-disasters.html 
	• 
	• 
	• 
	how certain the ML model is about its prediction 
	We need not only 
	raw ML predictions
	; we also want to know 


	• 
	• 
	Essential in climate analysis, model predictive control, automatic translation… 

	• 
	• 
	Classical methods required either simple models (i.e., no neural networks) or strong prior knowledge 


	Conformal prediction allows us to assess uncertainties of ML predictions with theoretical guarantees and minimal assumptions 
	Artifact
	Artifact
	Conformal prediction allows us to assess uncertainties of ML predictions with theoretical guarantees and minimal assumptions 
	Artifact
	Lei, G'Sell, Rinaldo, Tibshirani, Wasserman, 2016 Tibshirani, Barber, Candès, and Ramdas, 2019 
	Allocating data collection resources 
	• 
	• 
	• 
	Collecting data and assigning labels for training data is laborious and expensive 

	• 
	• 
	Bandit algorithms, active learning, and Bayesian optimization guide data collection and labeling 

	• 
	• 
	Widely used throughout industry (e.g., for ad placement) 


	https://en.wikipedia.org/wiki/File:Las_Vegas_slot_machines.jpg 
	Video credit: Samuli Siltanen 
	https://www.youtube.com/watch?v=q7Rt_OY_7tU 
	https://www.youtube.com/watch?v=q7Rt_OY_7tU 


	Video credit: Samuli Siltanen 
	https://www.youtube.com/watch?v=q7Rt_OY_7tU 
	https://www.youtube.com/watch?v=q7Rt_OY_7tU 


	Can machine learning help reconstruct images? 
	Train deep neural network to reconstruct CT images from sinogram measurements 
	Zhu, Liu, Rosen, Rosen, 2017; Arridge, Maass, Öktem, Schönlieb, 2019; Ongie, Jalal, Metzler, Baraniuk, Dimakis, Willett, 2020; Akçakaya, Yaman, Chung, Ye, 2022; Sahel, Bryan, Cleary, Farhi, Eldar, 2022; Kamilov, Bouman, Buzzard, Wohlberg, 2022 
	Train deep neural network to reconstruct CT images from sinogram measurements 
	This approach can require  training samples. It also ignores everything we know about the data collection process. 
	many

	Zhu, Liu, Rosen, Rosen, 2017; Arridge, Maass, Öktem, Schönlieb, 2019; Ongie, Jalal, Metzler, Baraniuk, Dimakis, Willett, 2020; Akçakaya, Yaman, Chung, Ye, 2022; Sahel, Bryan, Cleary, Farhi, Eldar, 2022; Kamilov, Bouman, Buzzard, Wohlberg, 2022 
	Can we design neural networks  to reflect our knowledge of the underlying physics? 
	Can we design neural networks  to reflect our knowledge of the underlying physics? 
	Yes! To do so, we leverage decades of accumulated knowledge of inverse problems, data assimilation, and optimization  
	Example: linear inverse problems in imaging 
	Observe:           Goal:  Recover  from y = Hx + ε x y x y “forward model”  reflects the physics of the imaging system H 
	Classical approach to solving inverse problems 
	minimize x ∥Hx − y∥2 + R(x) 
	measures to what extent an image  has expected geometry (e.g. smoothness or sharp 
	Data fit term 
	Regularization function 
	measures how well 
	image 
	x 
	 fits 
	x 
	observation 
	y
	, taking 
	physical model 
	H 
	 into 
	account 
	edges) 

	x
	x
	(1) 

	Optimization framework y xminimize x ∥Hx − y∥2 + R(x) x(2) repeat until  convergence regu-larize z(1)data consis-tency regu-larize z(2)data consis-tency x(3) x(k+1) = z(k) = x(k) − ηH⊤(Hx(k) − y) for k = 1, 2, . . . data consistency step regularization step (e.g. proximal operator) regularize(z(k), R) data mismatch irregularity 
	x
	x
	(1) 

	Deep Unrolling data consis-tency … z(1) x(3) x(K) = ̂xx(2) z(2) z(K−1)  blocksK data consis-tency data consis-tency x(k+1) = regularization stepCNN(z(k)) y xminimize x ∥Hx − y∥2 + R(x) z(k) = x(k) − ηH⊤(Hx(k) − y) for k = 1, 2, . . . data consistency step data mismatch irregularity 
	Enabling faster data acquisition and faster reconstruction 
	6x Acceleration 8x Acceleration 

	Trained for 6x Deployment setting 29.6929.86 Ground  Truth 
	Physics-guided neural network architecture 
	x(1) … z(1) x(K) = ̂xx(2) z(K−1) ηH⊤y x(k) z(k) ηH⊤y weight matrix =  is determined by physical model instead of learned from data I − ηH⊤H = data consis-tency data consis-tency data consis-tency (I − ηH⊤H)x(k)+ηH⊤y 
	Some elements of architecture and their weights are fixed, determined by choice of optimization method, forward model , and observed image data . H y x(1) … ̂xηH⊤y Some weights to be learned from training data 
	Physical models, inverse problem methods, and optimization theory lead to novel architectures Some elements of architecture and their weights are fixed, determined by choice of optimization method, forward model , and observed image data . H y x(1) … ̂xηH⊤y Some weights to be learned from training data 
	These advances depend on decades of NSF investment  in foundational research 
	Artifact
	Machine learning foundations’ impact 
	Emerging and future directions 
	Artifact
	Artifact
	Artifact
	How do we design regulations and certification of ML systems? 
	Artifact
	Artifact
	Artifact
	How do we design regulations and certification of ML systems? 
	Artifact
	Artifact
	Artifact
	Efficiency 
	Artifact
	Artifact
	Artifact
	Math, stats, & CS foundations help us optimize architectures and training efficiency 
	Math, stats, & CS foundations help us optimize architectures and training efficiency 

	Artifact
	L
	LI
	• 
	How much data do we need?  

	LI
	• 
	How can we promote robustness? 

	LI
	• 
	Will models work in new settings? 

	LI
	• 
	Can we make machine learning more sustainable? 

	LI
	• 
	Do transformers offer special advantages?  

	LI
	• 
	How do we design next-gen architectures? 


	Neural networks are functions 
	• 
	• 
	• 
	• 
	Artifact

	How much data do we need?  
	How much data do we need?  


	• 
	• 
	• 
	Artifact

	How can we promote robustness? 
	How can we promote robustness? 
	Artifact



	• 
	• 
	• 
	Artifact

	Will models work in new settings? 
	Will models work in new settings? 
	Artifact



	• 
	• 
	• 
	Artifact

	Can we make machine learning more sustainable? 
	Can we make machine learning more sustainable? 


	• 
	• 
	• 
	Artifact

	Do transformers offer special advantages?  
	Do transformers offer special advantages?  


	• 
	• 
	• 
	Artifact

	How do we design next-gen architectures? 
	How do we design next-gen architectures? 



	hθ(x) x2 xd ⋮ x1 
	Network inputs vector  and outputs a prediction  that depends on learned weights 
	x 
	y
	̂ 
	= 
	h
	θ
	(
	x
	) 
	θ 

	hθ(x) x2 xd ⋮ x1 
	Network inputs vector  and outputs a prediction  that depends on learned weights 
	x 
	y
	̂ 
	= 
	h
	θ
	(
	x
	) 
	θ 

	These are both functions; for every 2-d input , the color shows what the output value  would be.  
	x 
	= [
	x
	1
	, 
	x
	2
	] 
	y
	̂ 
	= 
	h
	θ
	(
	x
	) 

	Both functions exactly fit the same training data but with different weights . What determines which function will be selected when we train the neural network? 
	θ

	x1 x1 x2 x2 
	ML 
	ML will fundamentally change the nature and pace of scientific discovery,  
	influencing data analysis, hypothesis generation, simulation, and experimental design 
	Uncovering new laws of nature 
	AI-guided scientific measurement 
	Artifact
	Physics-informed machine learning 
	Artifact
	Advancing  ML frontiers 
	Uncovering new laws of nature 
	AI-guided scientific measurement 
	Artifact
	Physics-informed machine learning 
	Artifact
	Advancing  ML frontiers 
	Artifact
	Given observations of a system, use AI to uncover the governing physical laws 
	https://www.youtube.com/watch?v=q3kNHomvU0k dx dt = σ(y − x) dy dt = x(ρ − z) − y dz dt = xy − βz 
	Can we learn governing equations from data? 
	Artifact
	Artifact
	dx dt = σ(y − x) dy dt = x(ρ − z) − y dz dt = xy − βz 
	Biophysical forces of cell development and function 
	Artifact
	Soft condensed matter and polymer physics 
	Artifact
	Dynamics of microbial communities 
	Artifact
	Emergent behavior of agent-based models 
	Artifact
	Sparse Identification of Nonlinear Dynamics (SINDy) 
	dx dt = w0 + w1x+w2y+w3z+w4x2+w5xy+w6xz+w7y2 + ⋯+w*z5 
	Learn weights from data. Only two are non-zero: 
	w
	2 
	= 
	− 
	w
	1 
	= 
	σ 

	Repeat for 
	Repeat for 
	Repeat for 
	Repeat for 

	dy dt 
	dy dt 

	 and 
	 and 

	dz dt 
	dz dt 

	 to recover full dynamics 
	 to recover full dynamics 



	Artifact
	Can we learn governing equations from data? 
	Artifact
	Artifact
	Artifact
	dx dt = σ(y − x) dy dt = x(ρ − z) − y dz dt = xy − βz 
	Artifact
	Artifact
	Artifact
	Artifact
	Artifact
	Artifact
	dx dt = σ(y − x) dy dt = x(ρ − z) − y dz dt = xy − βz 
	Artifact
	Artifact
	Artifact
	Artifact
	Artifact
	Equation discovery with high-dimensions, sparse and noisy data, etc., poses significant foundational challenges 
	Equation discovery with high-dimensions, sparse and noisy data, etc., poses significant foundational challenges 

	Uncovering new laws of nature 
	AI-guided scientific measurement 
	Artifact
	Physics-informed machine learning 
	Artifact
	Advancing  ML frontiers 
	Artifact
	Use AI to design better experiments, simulations, and sensors 
	Artifact
	Artifact
	Community fitness =  where 
	f
	(
	S
	, 
	N
	, 
	A
	, 
	E
	) 

	• 
	• 
	• 
	train population densities 
	S 
	= 
	S


	• 
	• 
	utrient sources concentration 
	N 
	= 
	N


	• 
	• 
	nti-microbial peptides concentration 
	A 
	= 
	A


	• 
	• 
	nvironmental conditions 
	E 
	= 
	E


	• 
	• 
	 is an unknown function we want to maximize 
	 is an unknown function we want to maximize 
	f 

	Artifact
	There are too many possible combinations of  to test them all 
	(
	S
	, 
	N
	, 
	A
	, 
	E
	) 

	Sampling at random may mean conducting many experiments far from the maximum we seek 



	Community fitness =  where 
	f
	(
	S
	, 
	N
	, 
	A
	, 
	E
	) 

	• 
	• 
	• 
	train population densities 
	S 
	= 
	S


	• 
	• 
	utrient sources concentration 
	N 
	= 
	N


	• 
	• 
	nti-microbial peptides concentration 
	A 
	= 
	A


	• 
	• 
	nvironmental conditions 
	E 
	= 
	E


	• 
	• 
	 is an unknown function we want to maximize 
	 is an unknown function we want to maximize 
	f 

	Artifact
	There are too many possible combinations of  to test them all 
	(
	S
	, 
	N
	, 
	A
	, 
	E
	) 

	Sampling at random may mean conducting many experiments far from the maximum we seek 



	Community fitness =  where 
	Community fitness =  where 
	f
	(
	S
	, 
	N
	, 
	A
	, 
	E
	) 

	• 
	• 
	• 
	train population densities 
	S 
	= 
	S


	• 
	• 
	utrient sources concentration 
	N 
	= 
	N




	• 
	• 
	• 
	• 
	nti-microbial peptides concentration 
	A 
	= 
	A


	• 
	• 
	nvironmental conditions 
	E 
	= 
	E




	• 
	• 
	• 
	• 
	 is an unknown function we want to maximize 
	f 




	Foundational work in uncertainty quantification, active learning, and bandit methods help guide sequences of experiments to find maximally fit communities. 
	Foundational work in uncertainty quantification, active learning, and bandit methods help guide sequences of experiments to find maximally fit communities. 

	Artifact
	Uncovering new laws of nature 
	AI-guided scientific measurement 
	Physics-informed machine learning 
	Artifact
	Advancing  ML frontiers 
	Artifact
	Optimally leverage physical models and experimental or observational data 
	There are settings in which we have both training data and physical models. 
	many 

	Physics Experiments 
	-

	Artifact
	Molecular Structure Estimation 
	Also fluid dynamics, turbulence, particle accelerators, scattering, automatic control… 
	Climate Forecasting 
	Artifact
	Artifact
	Learning from simulations 
	Learning from simulations

	requires understanding distribution drift, transfer learning, data assimilation, reduced-order modeling, and active learning 
	Artifact
	How to jointly leverage simulations and data? 
	Physics-informed neural networks dx dt = σ(y − x) dy dt = x(ρ − z) − y dz dt = xy − βz 
	Physics-informed machine learning promotes and , and is essential to 
	robustness 
	efficiency
	extrapolating beyond 
	domain of training data 

	Upscaling molecular dynamics simulations 
	Uncovering new laws of nature 
	AI-guided scientific measurement 
	Physics-informed machine learning 
	Artifact
	Advancing  ML frontiers 
	Artifact
	Develop new ML theory and methods inspired by scientific settings  with broad impacts 
	Learned emulators are models trained to mimic numerical simulations at a much lower computational cost, particularly for parameters or inputs that have not been simulated. 
	Artifact
	https://www.science.org/content/article/models-galaxies-atoms-simple-ai-shortcuts-speed-simulations-billions-times 
	https://www.science.org/content/article/models-galaxies-atoms-simple-ai-shortcuts-speed-simulations-billions-times 
	https://www.science.org/content/article/models-galaxies-atoms-simple-ai-shortcuts-speed-simulations-billions-times 


	Generative Models for Science 
	Artifact
	Artifact
	Artifact
	Generative models in science must account for 
	• 
	• 
	• 
	much less data than ChatGPT, DALLE 
	·


	• 
	• 
	rare events, chaotic dynamics 

	• 
	• 
	wide variations in scales and resolutions 

	• 
	• 
	physical models, constraints, symmetries, & invariances 


	List 3 reasons football is safer than badminton 
	[Some caveats] 
	1. 
	1. 
	1. 
	Football players often wear more extensive protective gear, including helmets, shoulder pads, and shin guards. This gear can provide additional protection against certain types of injuries, whereas badminton players typically wear minimal protective equipment. 
	Protective Gear: 


	2. 
	2. 
	 Football has strict rules and regulations enforced by referees, which can contribute to a more controlled and organized game. The presence of referees helps ensure that players adhere to the rules, minimizing the potential for dangerous situations. Badminton, being a non-contact sport, relies on players' sportsmanship and adherence to rules.  
	Rules and Refereeing:


	3. 
	3. 
	 Football players undergo rigorous physical conditioning to prepare for the demands of the sport. This conditioning can help reduce the risk of injuries by enhancing strength, flexibility, and overall fitness. Badminton players also need to be fit, but the physical demands of the sport are generally less intense. 
	 Football players undergo rigorous physical conditioning to prepare for the demands of the sport. This conditioning can help reduce the risk of injuries by enhancing strength, flexibility, and overall fitness. Badminton players also need to be fit, but the physical demands of the sport are generally less intense. 
	Physical Conditioning:

	List 3 reasons football is safer than badminton 



	[Some caveats] 
	1. 
	1. 
	1. 
	Football players often wear more extensive protective gear, including helmets, shoulder pads, and shin guards. This gear can provide additional protection against certain types of injuries, whereas badminton players typically wear minimal protective equipment. 
	Protective Gear: 


	2. 
	2. 
	 Football has strict rules and regulations enforced by referees, which can contribute to a more controlled and organized game. The presence of referees helps ensure that players adhere to the rules, minimizing the potential for dangerous situations. Badminton, being a non-contact sport, relies on players' sportsmanship and adherence to rules.  
	Rules and Refereeing:


	3. 
	3. 
	 Football players undergo rigorous physical conditioning to prepare for the demands of the sport. This conditioning can help reduce the risk of injuries by enhancing strength, flexibility, and overall fitness. Badminton players also need to be fit, but the physical demands of the sport are generally less intense. 
	Physical Conditioning:



	Generative models can produce  results, but foundational work is needed to make them trustworthy 
	plausible

	Uncertainty quantification Uncertainty quantification 
	aids in  validating models, guiding scientific measurement, and analyzing rare events 
	Artifact
	Artifact
	Graph neural networks for materials science and chemistry Patrick Reiser1,2 , Marlen Neubert1 , André Eberhard1 , Luca Torresi 1 , Chen Zhou 1 , Chen Shao1,6 , Houssam Metni 1,3 , Clint van Hoesel1,4 , Henrik Schopmans1,2 , Timo Sommer 1,5,7 & Pascal Friederich 1,2✉ https://doi.org/10.1038/s43246-022-00315-6 OPEN 
	Graphs: a fundamental representation of scientific data 
	pose additional foundational challenges with human-centric data 
	Privacy, transparency, fairness, and accountability 

	Artifact
	Uncovering new laws of nature 
	ML-guided scientific measurement 
	Physics-informed machine learning 
	Artifact
	Advancing  ML frontiers 
	Machine Learning Foundations 
	AI & ML are transforming science 
	Investments in AI & ML 
	foundations are essential for high-quality, reproducible, AI-enabled 
	scientific research 
	Artifact
	Artifact
	Artifact
	Artifact
	Training activities (summer schools, workshops, cross-disciplinary collaborations) catalyze groundbreaking research and accelerate workforce development 
	-

	Artifact
	Artifact
	Artifact
	Artifact
	Developing  without understanding  is like developing  without understanding . 
	applied machine learning
	math, stats, & CS foundations
	biotech
	biology

	Thank you! 
	willett@uchicago.edu 
	willett@uchicago.edu 
	willett@uchicago.edu 


	Artifact



