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Machine Learning

Foundations Accelerate
Innovation and Promote

Trustworthiness

Rebecca Willett
University of Chicago
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Al will affect

every step of
this process




Develop a new
understanding of the laws of
nature and rules of life

Accelerate affordable drug
development

Engineer green materials
Builld guantum computers

Develop sustainable climate
policies

Groundbreaking Discoveries and Translation

-

Image credit: https:.//www.greenbiz.com/article/whats-your-sustainability-moonshot
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Developing applied machine
learning without understanding
math, stats, & CS foundations is
ike developing biotech without

understanding biology.



Machine
learning

Emerging
and future

foundations’ . |
airections

Impact
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Faster optimization methods for ML

DEEP NEURAL NETWORK

Hidden Hidden |
o layer 2 layer 3 }

Input > Hidden 'I
layer layer

neuralinetworksanddeeplearning.com - Michael Nielsen, Yoshua Bengio. lan Goodfellow, and Aaron Courville, 2016.

Output
layer

‘0 Machine learning uses training
data to set parameters of a model
(e.g. neural network weights)

‘0 We train models using
optimization methods which
update parameters based on
gradients of the loss

Adagrad adapts gradients to
past estimates, accelerating

training; foundation of popular
methods like Adam

Duchi, Hazan, Singer, 2011
Kingma and Ba, 2014



Faster optimization across multiple computers

‘0 [Large-scale machine learning iIs typically % @
distributed across multiple machines
‘0 Expectation: more machines = faster l l

g data
|

computation N

|
Node 1 Node 2

‘0 Reality with naive distributed
optimization: more machines = |

=

Training data
|

|

Node 3

diminishing returns @

Trained Model

Recht, Re, Wright, Niu, 2011



Faster optimization across multiple computers

‘0 Large-scale machine learning is typically
distributed across multiple machines

‘0 Expectation: more machines = faster
computation

‘0 Reality with naive distributed
optimization: more machines =

diminishing returns ,@:}

Hogwild: theoretically-groundeo
asynchronous distriputeo

optimization = faster

computation with more
NEEAIRES

Recht, Re, Wright, Niu, 2011



Privacy guarantees

.0 Common standard: k-anonymity,
which transforms data just
enough to make each individual
indistinguishable from k others in
the data set.

-0 Legally sufficient for fulfilling
porivacy-protection regulations
such as HIPAA and GDPR

‘0 Foundational insight: users redact
the minimum possible to satisfy k
-anonymity. Knowing they
redacted the minimum provides
additional information about what
was redacted.

Cohen, 2022



Privacy guarantees

‘0 How can we preserve the privacy of people represented by our data?

-0 Classical approach: aggregate data
-.g., only release summary statistics for 10 or more people.

Without more conditions, very easy to break

‘0 More recent: differential privacy
-.g., randomly perturp data

Guarantees that someone seeing algorithm output cannot tell if a particular person’s data
was used

NO Privacy high privacy

Dwork, McSherry, Nissim and Smith, 2006

Image: https.//aircloak.com/explaining-differential-privacy/



https://aircloak.com/explaining-differential-privacy/

Quantifying uncertainty in predictions

httos:.//www.allianz.com/en/press/news/commitment/environment/190912_Allianz-drones-and-hurr

icanes-flying-masters-of-disasters.html

-0 We need not only raw ML predictions;

we also want to know how certain the
ML model is about its prediction

‘0 Essential in climate analysis, model

oredictive control, automatic

translation...

simple mode

-0 Classical methods required either

S (I.e., No neural networks)

or strong prior knowledge



Conformal prediction allows us to assess uncertainties of ML

oredictions with theoretical guarantees and minimal assumptions

Lei, G'Sell Rinaldo, Tibshirani, Wasserman, 2016
Tibshirani, Barber, Candes, and Ramdas, 2019



Conformal prediction allows us to assess uncertainties of ML
oredictions with theoretical guarantees and minimal assumptions

Object Pose Estimation with Statistical Guarantees:
Conformal Keypoint Detection and Geometric Uncertainty Propagation

Heng Yang and Marco Pavone
NVIDIA Research

Conformal Keypoint Detection Geometric Uncertainty Propagation —
y S |
. N
' .) " /

' reproject
Inductive c _ " —— ..
Conformal ad - onstratl.nt - Y ©/ANSAG N ) Rerrlu etl.nle -
Prediction ~~ ropagation rou e elaxation
| - . /
' -

\v/

(@) Input image & heatmaps (b) Circular/elliptical prediction sets (c) Pose UnceRtainty SEt (PURSE) (d) Average pose (e) Worst-case error bounds

Lei G'Sell Rinaldo, Tibshirani, Wasserman, 2016
Tibshirani, Barber, Candes, and Ramdas, 2019



Conformal prediction allows us to assess uncertainties of ML

oredictions with theoretical guarantees and minimal assumptions

Object Pose Estimation with Statistical Guarantegs
Conformal Keypoint Detection and Geometric Uncertainty [PNAS o s o open ace

Heng Yang and Marco Pavone
NVIDIA Research

Conformal Keypoint Detection Geometric Uncertainty Propagation

Conformal prediction under feedback covariate shift for
biomolecular design

Clara Fannjiang®, Stephen Bates®, Anastasios N. Angelopoulos?, Jennifer Listgarten®‘, and Michael |. Jordan®®'®

Contributed by Michael I. Jordan; received March 15, 2022; accepted June 20, 2022; reviewed by Ryan Adams and Jing Lei

2

Inductive

> 20 |r
—bI tm a4 Conformal

| Prediction

(@) Input image & heatmaps (b) Circular/elliptical prediction sets

» *
Propagation

(c) Pose UnceRtainty SEt (PURSE) (d) Average pose

training

‘__--------------.‘_o

fitness

@ .NVFSC. (@]
designed sequence

training sequences

Lei G'Sell Rinaldo, Tibshirani, Wasserman, 2016
Tibshirani, Barber, Candes, and Ramdas, 2019



Conformal prediction allows us to assess uncertainties of ML

oredictions with theoretical guarantees and minimal assumptions

Object Pose Estimation with Statistical Guarantegs
Conformal Keypoint Detection and Geometric Uncertainty [PNAS o s o open ace

Heng Yang and Marco Pavone Conformal prediction under feedback covariate shift for
NVIDIA Research biomolecular design

Clara Fannjiang®, Stephen Bates®, Anastasios N. Angelopoulos?, Jennifer Listgarten®‘, and Michael |. Jordan®®'®

Conformal Keypoint Detection Geometric Uncertainty Propagation
ypo ty pag Contributed by Michael I. Jordan; received March 15, 2022; accepted June 20, 2022; reviewed by Ryan Adams and Jing Lei

regression mode

- )y | | Inductive ’ — S
: Fl—p | Bmg Conformal E2 = - A ons rat|‘n - F(: |
Prediction r~— ropagation = |
| . N

@he Washington Post

Democracy Dies in Darkness

éElections Election 2024 Midterms 2022 Senate House Governors Results by state v Dem
(d) Average pose

POLITICS

How The Washington Post will
model possible outcomes in the
Virginia governor’s race

@ By Lenny Bronner

November 2, 2021 at 1:57 p.m. EDT

fitness

@ .NVFSC. (@]
training segquences designed sequence

Lei G'Sell Rinaldo, Tibshirani, Wasserman, 2016
Tibshirani, Barber, Candes, and Ramdas, 2019



Conformal prediction allows us to assess uncertainties of ML

oredictions with theoretical guarantees and minimal assumptions

Object Pose Estimation with Statistical Guarantegs
Conformal Keypoint Detection and Geometric Uncertainty

Heng Yang and Marco Pavone
NVIDIA Research

Conformal Keypoint Detection

. ™ I| Inductive ' . .
: =l B4 Conformal B2 OR - 5 onstra|‘nt —_
Prediction r— ropagation
My

@he Washington Post

Democracy Dies in Darkness

éElections Election 2024 Midterms 2022 Senate House Governors Results by state v Dem

POLITICS

How The Washington Post will
model possible outcomes in the
Virginia governor’s race

@ By Lenny Bronner

November 2, 2021 at 1:57 p.m. EDT

Geometric Uncertainty Propagation

RESEARCH ARTICLE STATISTICS mf' OPEN AC(

PNAS

Conformal prediction under feedback covariate shift for
biomolecular design

Clara Fannjiang®, Stephen Bates®, Anastasios N. Angelopoulos?, Jennifer Listgarten®‘, and Michael |. Jordan®®'®

Contributed by Michael I. Jordan; received March 15, 2022; accepted June 20, 2022; reviewed by Ryan Adams and Jing Lei

=\

Journal of Healthcare Informatics Research (2022) 6:241-252
https://doi.org/10.1007/s41666-021-00113-8

REVIEW ARTICLE

Conformal Prediction in Clinical Medical Sciences

Janette Vazquez' - Julio C. Facelli' ©®

Lel G'Sell Rinaldo, Tibshirani, Wasserman, 2016
Tibshirani, Barber, Candes, and Ramdas, 2019



Allocating data collection resources

-0 Collecting data and assigning

labels for training data is laborious
and expensive

‘0 Bandit algorithms, active learning,
and Bayesian optimization guide
data collection and labeling

»
.
'y

-
:
~
:
:

0 Widely used throughout industry
(e.q., for ad placement)

Thompson, 1933
Russo, Van Roy, Kazerouni, Osband & Wen, 2018
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Can machine learning help reconstruct images?

Train deep neural network to reconstruct CT
images from sinogram measurements

Zhu, Liu, Rosen, Rosen, 2017 Arridge, Maass, Oktem, Schonlieb, 2019 Ongie, Jalal. Metzler, Baraniuk, Dimakis, Willett, 2020:;
Akcakaya, Yaman, Chung, Ye, 2022, Sahel, Bryan, Cleary, Farhi, Eldar, 2022, Kamilov. Bouman, Buzzard, Wohlberg, 2022



Can machine learning help reconstruct images?

Train deep neural network to reconstruct CT
images from sinogram measurements

This approach can require many training samples.

T also Ignores everything we know about the data collection process.

Zhu, Liu, Rosen, Rosen, 2017 Arridge, Maass, Oktem, Schonlieb, 2019 Ongie, Jalal, Metzler, Baraniuk, Dimakis, Willett, 2020;
Akcakaya, Yaman, Chung, Ye, 2022, Sahel, Bryan, Cleary, Farhi, Eldar, 2022, Kamilov. Bouman, Buzzard, Wohlberg, 2022



Can we design neural networks

to reflect our knowledge of the
underlying physics?




Can we design neural networks

to reflect our knowledge of the
underlying physics?

Yes! To do so, we leverage decades of
accumulated knowledge of inverse
oroblems, data assimilation, and optimization



Example: [inear inverse problems in Imaging

Observe: y=Hx+€&
Goal: Recover x from y

— ] “forward model” H reflects
Y - . . Jua the physics of the imaging
o sy stem




Classical approach to solving inverse proplems

minimize ||Hx — y||* + R(x)

X

Data fit term Reqgularization function
measures how well measures to what extent
image x fits an Iimage x has expected
observation y, taking geometry (e.Q.
ohysical model H into smoothness or sharp

account edges)



D

Optimization framework

y minimize ||Hx — y||* + R(x) o
X
data . .
rregularity.
fork=1,2,...
Z(k) = x® — nH (Hx(k) — V) data consistency step
x*&+ D =reqularize(z®, R) regularization step

(e.g. proximal operator)

data data : .
regu- ¥ repeat unti

CONSIS- : : CONSIS- s
tency, . : tency, cfes convergence




Deep Unrolling

y minimize ||Hx — y||* + R(x) .
X
data . .
rregularity
fork=1,2,...
Z(k) = x® — nH (Hx(k) — V) data consistency step
x**D = CNN(z®) regularization step

[ ]

b /

[ ]

1) data e e 8| . data

. CONSIS- v Y-S e[ . CONSIS-

5 : . .
tency : ; tency
b °

K blocks



Fnabling faster data acquisition and faster reconstruction

ox Acceleration 8x Acceleration

Deployment
setting

Ground
Truth

.'.

G e e
5 -

Trained tor 6x



Physics-guided neural network architecture
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Physics-guided neural network architecture
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Physics-guided neural network architecture

architecture and their

weights are fixed,
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of optimization met
forward model H, a
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These advances
depend on decades of
NSF Investment

IN foundational research




Emerging

and future
directions




€he New ok Times

Disinformation Researchers Raise

Alarms About A.I. Chatbots

Researchers used ChatGPT to produce clean, convincing text that
repeated conspiracy theories and misleading narratives.

o Givethisarticle  ~>  []  [J183

A.l. Bias Caused 80% Of
Black Mortgage

Applicants To Be
Denied

The

Guardian
Women less likely to be shown ads for

high-paid jobs on Google, study shows

Racial bias in a medical algorithm favors
white patients over sicker black patients

ﬁ By Carolyn Y. Johnson

October 24, 2019 at 2:00 p.m. EDT
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Disinformation Researchers Raise

Alarms About A.l. Chatbots

Researchers used ChatGPT to produce clean, convincing text that
repeated conspiracy theories and misleading narratives.

A.Il. Bias Caused 80% Of
Black Mortgage

Applicants To Be
Denied
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design
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of ML

systems?
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Women less likely to be shown ads for

high-paid jobs on Google, study shows

Racial bias in a medical algorithm favors
white patients over sicker black patients

ﬁ By Carolyn Y. Johnson
October 24, 2019 at 2:00 p.m. EDT




| X040 ol Peep Learning’s
Carbon Emissions

Problem

Rob Toews Contributor ®

The bottom line: Al has a meaningful carbon
footprint today, and if industry trends
continue it will soon become much worse.
Unless we are willing to reassess and reform
today’s Al research agenda, the field of
artificial intelligence could become an
antagonist in the fight against climate

change in the years ahead.

Efficiency

The Washington Post

A new front in the water wars: Your internet use

In the American West, data centers are clashing with local communities that want to preserve
water amid drought

e By Shannon Osaka

April 25, 2023 at 6:30 a.m. EDT
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A Google data center in The Dalles, Ore., seen in October 2021. (Andrew Selsky/AP)



Efficiency

I 20 Deep Learning’s The Washington Post
Carbon Emissions
Problem A new front in the water wars: Your internet use

In the American West, data centers are clashing with local communities that want to preserve
water amid drought

e By Shannon Osaka
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The bottom line: Al has a meaningful carbon

footprint today, and if industry trends
continue it will soon become much worse.
Unless we are willing to reassess and reform
today’s Al research agenda, the field of
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antagonist in the fight against climate
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-OHow much data do we need?
-OHow can we promaote robustness?
OWill models work In new settings?

-O0Can we make machine learning more sustainable?
-O0Do transformers offer special advantages?
OHow do we design next-gen architectures?




Neural networks are functions

-OHow much data do we need?
-OHow can we promaote robustness?
OWill models work In new settings?

-O0Can we make machine learning more sustainable?
-O0Do transformers offer special advantages?
OHow do we design next-gen architectures?
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Neural networks are functions

W\\\

X1
e k{wz, -
%2 “”{’// \3 I Network inputs vector x and
&’w /‘~ ::S’:‘f f’f' % .y A
;&i‘\\ ,.‘ ®@/(x)  outputs a prediction y = h,(x) that
»’*i’}:é' .
X, 288N\ .:,N;‘\‘ :7 depends on learned weights @

‘\\\

These are both functions; for every 2-d input x = [xy, X, ],
the color shows what the output value y = hy(x) would be.

Both functions exactly fit the same training data but with
different weights €. What determines which function will

be selected when we train the neural network?




ML will fundamentally
change the nature and pace
of scientific discovery,

iINnfluencing data analysis,
hypothesis generation,
simulation, and experimental
design



Uncoverin Al-guided
hew laws o scientific
hature measurement

iInformed Advancing
machine ML frontiers
learning
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Can we learn governing eguations from data?

dx ( )

— =0 — X

dt ’

dy

— =X —_— —_—
. (p—2)—)
dz

Z=Xy—ﬁ2




Biophysical Dynamics of
forces of cell microbial

development communities
and function

Soft condensed |
matter and Ay
polymer physics

8 Emergent behavior of
agent-pased modaels

. N
N N




Sparse ldentification of Nonlinear Dynamics (SINDy)

dx
o = Wo + W Xt+Ww y+w3z+w4x2+w5xy+w6xz+w7y2 + bWz

Learn weights from data. Only two are non-zero: w, = — w; = o0

dy dz .
Repeat for 7 and ? to recover full dynamics
{ {

Brunton, Proctor, & Kutz 2016



Can we learn governing eguations from data?

dx ( )

— =0 — X

dt ’

dy

— =X —_— —_—
. (p—2)—)
dz
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Can we learn governing eguations from data?

a I'X]_V > astro-ph > arXiv:2202.02306

Astrophysics > Earth and Planetary Astrophysics

[Submitted on 4 Feb 2022]

dx . G(y . x) Rediscovering orbital mechanics with machine learning
dl‘ Pablo Lemos, Niall Jeffrey, Miles Cranmer, Shirley Ho, Peter Battaglia

ﬂ =x(p—2)—Yy

dt s

— T xy — ﬂZ ? 'i -

dt

PNAS
Discovering governing equations from data

by sparse identification of nonlinear
dynamical systems

Steven L. Brunton B, Joshua L. Proctor, and |. Nathan Kutz Authors Info & Affiliations

Science Advances
Al Feynman: A physics-inspired method for symbolic regression

SILVIU-MARIAN UDRESCU AND MAX TEGMARK Authors Info & Affiliations




Can we learn governing eguations from data?

a I'X]_V > astro-ph > arXiv:2202.02306

Astrophysics > Earth and Planetary Astrophysics

[Submitted on 4 Feb 2022]

dx = 6(y — x) Rediscovering orbital mechanics with machine learning
dl‘ Pablo Lemos, Niall Jeffrey, Miles Cranmer, Shirley Ho, Peter Battaglia

Y —dp-9-)

dt

PNAS

Discovering governing equations from data
by sparse identification of nonlinear
dynamical systems

Equation discovery: with high-
Seience Advances dimensions, sparse and NoIsy.

Al Feynman: A physics-inspired method for symbolic regression a ata, etc. 4 POSES SIgN Ticant
SSSSSS foundational challenges




Al-guided
scientific
measurement

e



Use Al to design better experiments,
SiIMmulations, and Sensors




How do we design a micropial community with maximum fitness?




How do we design a micropial community with maximum fitness?

Community fitness = f(S, N, A, E) where
-0 8 = Strain population densities

-0 /N = Nutrient sources concentration

-0 A = Anti-microbial peptides concentration

0 F = Environmental conditions

-0 fis an unknown function we want to maximize



How do we design a micropial community with maximum fitness?

There are too many possible
combinations of (S, N, A, E) to
test them al

Sampling at random may mean
conducting many experiments
far from the maximum we seek

Community fitness = f(S, N, A, E) where
-0 8 = Strain population densities

-0 /N = Nutrient sources concentration

-0 A = Anti-microbial peptides concentration

0 F = Environmental conditions

-0 fis an unknown function we want to maximize



How do we design a micropial community with maximum fitness?

Community fitness = f(S, N, A, E) where
-0 8 = Strain population densities

-0 /N = Nutrient sources concentration

-0 A = Anti-microbial peptides concentration

0 F = Environmental conditions

-0 fis an unknown function we want to maximize

There are too many possible
combinations of (S, N, A, E) to
test them al

Sampling at random may mean
conducting many experiments
far from the maximum we seek

Foundational work In uncertainty,
quantification, active learning,

and bandit methods help guige
seguences of experiments to
find maximally fit communities.




Science Advances Argonne &

Self-driving laboratory for accelerated discovery of
thin-film materials

Developing a self-driving laboratory
prototype

C. P. BERLINGUETTE ewer Authors Info & Affiliations
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Optimall leverage physical models ano
experimental or opservational data




There are many/
settings in wWhich

PNV SICS

we have both —Xerl-
training data and ments P T SS—_—
physical models: QN i

s SN <>

Molecular Structure Climate Forecasting

—stimation

s
N\
@J g Horizontal Grid
(Latitude-Longitude)
0
.
—___ mme
Vertical Grid ) mar
(Height or Pressure) | =='!
ol
e
_ e
e —T =
p— _==‘
Physical Processes in a Model 11
solar  terrestrial ;-:v"—‘
vodln?_on radiation
ATMOSPHERE A g
N )
L‘)m’.} - advection . ?
T e o S st
S )

Also fluid dynamics, turbulence, particle
INg, automatic control...

accelerators, scatter




2012-10-20_00

earning from simulations

requires understanding
distribution drift, transfer
learning, data assimilation,
reduced-order modeling,
and active learning




How to jointly leverage
simulations and data®?

N_,‘.?-.' = o

Physics-Informed machine
learning promotes robustness
and efficiency, and is essential

to extrapolating beyond

domain of training data

Number of Atoms

Physics-informed neural networks

Upscaling molecular
dvnamics simulations
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Develop new ML theory and methods
inspired by scientific settings
WIth broad Impacts




Science

From models of galaxies to atoms, simple Al

shortcuts speed up simulations by billions of
Learned emulators times
alre Od e ‘ S 1ra | N ed tO With lit’Fle training, neural networks create accurate emulators for physics, astronomy, and
mimic numerical e seienee

simulations at a much

12 FEB 2020 - BY MATTHEW HUTSON

lower computational
cost, particularly for
parameters or Inputs
that have not been
simulated.

httos../www.science.org/content/article/models-galaxies-atoms-simple-ai-shortcuts-speed-simulations-billions-times


https://www.science.org/content/article/models-galaxies-atoms-simple-ai-shortcuts-speed-simulations-billions-times

Generative Models tor Science

Generative models In science must account for
‘0 much less data than ChatGPT, DALL-E

‘O rare events, chaotic dynamics
O wide variations In scales and resolutions

‘0 physical models, constraints, symmetries, &
INnvariances



You
List 3 reasons football is safer than badminton

7] ChatGPT

[Some caveats]

1. Protective Gear: Football players often wear more extensive protective gear, including helmets, shoulder pads,
and shin guards. This gear can provide additional protection against certain types of injuries, whereas badminton
players typically wear minimal protective equipment.

2. Rules and Refereeing: Football has strict rules and regulations enforced by referees, which can contribute to a
more controlled and organized game. The presence of referees helps ensure that players adhere to the rules,
Minimizing the potential for dangerous situations. Badminton, being a non-contact sport, relies on players'
sportsmanship and adherence to rules.

3. Physical Conditioning: Football players undergo rigorous physical conditioning to prepare for the demands of the
sport. This conditioning can help reduce the risk of injuries by enhancing strength, flexibility, and overall fithess.
Badminton players also need to be fit, but the physical demands of the sport are generally less intense.
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Generative models can produce plausiblée results, but

foundational work is needed to make them trustworthy




Uncertainty

quantification

alds In aws s S

validating models,
guiding scientific e o Lo o

measurement, and Introducing Fortuna: A library for uncertainty

quantification

a n a ‘ y Z i n g ra re eve n tS by Gianluca Detommaso, Alberto Gasparin, Cedric Archambeau, Michele Donini, Matthias Seeger,

and Andrew Gordon Wilson | on 16 DEC 2022 | in Amazon Machine Learning, Artificial
Intelligence, Foundational (100) | Permalink | ® Comments | # Share

Products Solutions Pricing Documentation Learn Partner Network AWS Marketplace Customer Enablement

AWS Blog Home  Topics ¥ Edition ~

Proper estimation of predictive uncertainty is fundamental in applications that involve critical
decisions. Uncertainty can be used to assess the reliability of model predictions, trigger human
intervention, or decide whether a model can be safely deployed in the wild.
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Graph neural networks for materials science and
chemistry

Patrick Reiser'2, Marlen Neubert! André Eberhard!, Luca Torresi®
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Graphs: a fundamental representation of scientific data

httos./www.pulsus.com/scholarly-articles/essentials-in-brain-connectivity-3758.html,
https.//isbscience.org/about/what-is-systems-biology/network-biology/, httos../www.youtube.com/watch?v=_3uQqrrBcrQ


https://www.youtube.com/watch?v=_3uQqrrBcrQ
https://isbscience.org/about/what-is-systems-biology/network-biology
https://www.pulsus.com/scholarly-articles/essentials-in-brain-connectivity-3758.html

Privacy, transparency, fairness,
and accountability

nose additional foundational
challenges with human-centric data
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Al & ML are transforming science

Investments in Al & ML
foundations are essential for high-
quality, reproducible, Al-enabled
scientific research



I E Science
Artificial intelligence faces reproducibility crisis

Unpublished code and sensitivity to training conditions make many claims hard to verify
WILL KNIGHT ~ BUSINESS AUG 18, 2822 7:88 AM
MATTHEW HUTSON Authors Info & Affiliations

SIOPPY Use Of MaChine Lea rning Is Ca USing SCIENCE - 16 Feb 2018 - Vol 359, Issue 6377 - pp. 725726 - DOI: 10.1126/science.359.6377.725
a ‘Reproducibility Crisis” in Science s 1o 9 A

Al hype has researchers in fields from medicine to sociology rushing to
use techniques that they don’t always understand—causing a wave of
spurious results.

Orep

@i, ARTIFICIAL INTELLIGENCE

Al is wrestling with areplication
CriISIS
Tech giants dominate research but the line between real breakthrough and
product showcase can be fuzzy. Some scientists have had enough.
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Training activities (summer schoaols,
WOIrKSNhops, cross-disciplinary
collaborations) catalyze ground-
breaking research and accelerate
workforce development
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Developing applied machine
learning without understanding
math, stats, & CS foundations is
ike developing biotech without

understanding biology.



Thank you!

willett@uchicago.edu
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	Football players often wear more extensive protective gear, including helmets, shoulder pads, and shin guards. This gear can provide additional protection against certain types of injuries, whereas badminton players typically wear minimal protective equipment. 
	Protective Gear: 
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	2. 
	 Football has strict rules and regulations enforced by referees, which can contribute to a more controlled and organized game. The presence of referees helps ensure that players adhere to the rules, minimizing the potential for dangerous situations. Badminton, being a non-contact sport, relies on players' sportsmanship and adherence to rules.  
	Rules and Refereeing:
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	 Football players undergo rigorous physical conditioning to prepare for the demands of the sport. This conditioning can help reduce the risk of injuries by enhancing strength, flexibility, and overall fitness. Badminton players also need to be fit, but the physical demands of the sport are generally less intense. 
	 Football players undergo rigorous physical conditioning to prepare for the demands of the sport. This conditioning can help reduce the risk of injuries by enhancing strength, flexibility, and overall fitness. Badminton players also need to be fit, but the physical demands of the sport are generally less intense. 
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