

TELESCOPES OF THE SOUTH POLE

The South Pole is one of the premier sites for astronomy. At more than 9,000 feet elevation, the thin, dry air and six months of darkness during the polar winter make for ideal observing conditions. For more than forty years, astronomers have trekked to the bottom of the world to study the cosmos above.

Numerous telescopes over the years have found a home at the South Pole. With them, astronomers have peered deep into space and back in time to when the universe was young. The harsh Antarctic climate can be tough on equipment, but despite sub-zero temperatures and winter storms, researchers working at the South Pole continue to conduct cutting edge research from one of the most isolated places on Earth.

SOUTH POLE OPTICAL TELESCOPE-2		1986-1988	SOUTH POLE OPTICAL TELESCOPE-2 Type: Optical "SPOT-2" Improved on the design of SPOT-1 to test the feasibility of an automated optical telescope to observe the night sky. Built: Early 1986 Decommissioned: Early 1988 Image Credit: University of Florida
BELL LABS PROJECT SERIES		1986-1992	BELL LABS PROJECT SERIESType: MicrowaveOver several summers, a rotating team of astronomers and their instruments led by researchers at Bell Labs tested out different systems to observe the Cosmic Microwave Background Radiation, the oldest light in the universe.Built: Late 1986 Decommissioned: Early 1992 Image Credit: Center for Astrophysical Research in Antarctica
WHITE DISH		1988-1993	WHITE DISH Type: Microwave Though only operated during summers, White Dish was one of the first to take detailed measurements of the Cosmic Microwave Background from the South Pole. Built: Late 1988 Decommissioned: Early 1993 Image Credit: Gregory Tucker
PYTHON		1992-1997	PYTHON Type: Microwave PYTHON was the first CMB telescope to operate during the winter at the South Pole, taking full advantage of the site's dark skies, high elevation, and dry thin air. Built: Late 1992 Decommissioned: Late 1997 Image Credit: NSF
SPIREX		1993-1999	SPIREX Type: Infrared The South Pole Infrared Explorer Telescope was used to map the sky in infrared, and in 1994, it had the most continuous view in the world when fragments from the comet Shoemaker-Levi 9 collided with Jupiter. Built: Late 1993 Decommissioned: Late 1999 Image Credit: Joe Rottman
AST/RO		1995-2005	AST/RO Type: Microwave The Antarctic Submillimeter Telescope/Remote Observatory studied interstellar dust and produced data for more than 100 papers on star formation. Built: Early 1995 Decommissioned: Early 2005 Image Credit: Ginny Figlar, NSF
AASTO		1996-2004	AASTOType: VariousThe Automated Astrophysical Site Testing Observatory was an Australian collaboration to test a variety of different small automated telescopes and instruments at the South Pole.Built: Late 1996 Decommissioned: Early 2004 Image Credit: Douglas Caldwell
VIPER		1998-2005	VIPER Type: Microwave The most powerful CMB telescope of its time, VIPER helped prove that the universe will go on expanding forever, disproving the theory the cosmos would collapse in a "Big Crunch." Built: Early 1998 Decommissioned: Late 2005 Image Credit: William Holzapfel
DASI		1999-2003	DASI Type: Microwave The Degree Angular Scale Interferometer, or "DASI," was the first telescope to measure polarization in the Cosmic Microwave Background Radiation. Built: Late 1999 Decommissioned: Late 2003 Image Credit: Brien Barnett, NSF
VULCAN SOUTH		2004-2006	VULCAN SOUTH Type: Optical Operated by SETI, the Search for Extraterrestrial Intelligence, VULCAN South searched for planets by looking for a tell-tale dip in a star's brightness when their planets passed in front of them. Built: Early 2004 Decommissioned: Early 2006 Image Credit: Douglas Caldwell
QUaD	<image/>	2004-2008	QUaD Type: Microwave The QUaD telescope further measured the polarization of the Cosmic Microwave Background. Built: Late 2004 Decommissioned: Early 2008 Image Credit: Rfriedman81
BICEP 1	<image/>	2005-2009	BICEP 1 Type: Microwave Short for "Background Imaging of Cosmic Extragalactic Polarization," the first BICEP telescope began the hunt for B-mode polarizations in the CMB that might be leftover from moments after the Big Bang. Built: Late 2005 Decommissioned: Early 2009 Image Credit: Steve Martaindale, NSF
BICEP 2	<image/>	2009-2012	BICEP 2 Type: Microwave An upgrade over the first BICEP, adding more detectors making it more sensitive in the hunt for evidence in the CMB of inflation, when moments after the Big Bang the universe expanded very quickly. Built: Late 2009 Decommissioned: Late 2012 Image Credit: Ketiltrout
BICEP 3		2015-present	BICEP 3 Type: Microwave Another BICEP upgrade further increasing its power and sensitivity by an order of magnitude over BICEP 2. Built: Early 2015 Image Credit: Mike Lucibella

